Skip to main content
Log in

Strain rate and fuel composition dependence of chemiluminescent species profiles in non-premixed counterflow flames: comparison with model results

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A detailed comparison has been conducted between chemiluminescence (CL) species profiles of OH, CH, and C2 , obtained experimentally and from detailed flame kinetics modeling, respectively, of atmospheric pressure non-premixed flames formed in the forward stagnation region of a fuel flow ejected from a porous cylinder and an air counterflow. Both pure methane and mixtures of methane with hydrogen (between 10 and 30 % by volume) were used as fuels. By varying the air-flow velocities methane flames were operated at strain rates between 100 and 350 s−1, while for methane/hydrogen flames the strain rate was fixed at 200 s−1. Spatial profiles perpendicular to the flame front were extracted from spectrograms recorded with a spectrometer/CCD camera system and evaluating each spectral band individually. Flame kinetics modeling was accomplished with an in-house chemical mechanism including C1–C4 chemistry, as well as elementary steps for the formation, removal, and electronic quenching of all measured active species. In the CH4/air flames, experiments and model results agree with respect to trends in profile peak intensity and position. For the CH4/H2/air flames, with increasing H2 content in the fuel the experimental CL peak intensities decrease slightly and their peak positions shift towards the fuel side, while for the model the drop in mole fraction is much stronger and the peak positions move closer to the fuel side. For both fuel compositions the modeled profiles peak closer to the fuel side than in the experiments. The discrepancies can only partly be attributed to the limited attainable spatial resolution but may also necessitate revised reaction mechanisms for predicting CL species in this type of flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Tsuji, I. Yamaoka, Proc. Combust. Inst. 13, 723 (1971)

    Google Scholar 

  2. M.D. Smooke, I.K. Puri, K. Seshadri, Proc. Combust. Inst. 21, 1783 (1986)

    Google Scholar 

  3. R.S. Barlow, A.N. Karpetis, J.H. Frank, J.-Y. Chen, Combust. Flame 127, 2102 (2001)

    Article  Google Scholar 

  4. G. Dixon-Lewis, T. David, P.H. Gaskell, S. Fukutani, H. Jinno, J.A. Miller, R.J. Kee, M.D. Smooke, N. Peters, E. Effelsberg, J. Warnatz, F. Behrendt, Proc. Combust. Inst. 20, 1893 (1984)

    Google Scholar 

  5. M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, Combust. Flame 149, 435 (2007)

    Article  Google Scholar 

  6. F.A. Williams, in Turbulent Mixing in Non-reactive and Reactive Flows, ed. by S.N.B. Murthy (Plenum, New York, 1974), p. 189

    Google Scholar 

  7. I. Yamaoka, H. Tsuji, Proc. Combust. Inst. 16, 1145 (1977)

    Google Scholar 

  8. F. Akamatsu, T. Wakabayashi, S. Tsushima, Y. Mizutani, Y. Ikeda, N. Kawahara, T. Nakajima, Meas. Sci. Technol. 10, 1240 (1999)

    Article  ADS  Google Scholar 

  9. Y. Hardalupas, C.S. Panoutsos, A.M.K.P. Taylor, Exp. Fluids 49, 883 (2010)

    Article  Google Scholar 

  10. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  11. C.S. Panoutsos, Y. Hardalupas, A.M.K.P. Taylor, Combust. Flame 156, 273 (2009)

    Article  Google Scholar 

  12. V.N. Nori, J.M. Seitzman, in 45th AIAA Aerospace Sciences Meet. Exhib., Reno, NV (2007)

    Google Scholar 

  13. F.V. Tinaut, M. Reyes, B. Giménez, J.V. Pastor, Energy Fuels 25, 119 (2011)

    Article  Google Scholar 

  14. T.S. Cheng, C.-Y. Wu, Y.-H. Li, Y.-C. Chao, Combust. Sci. Technol. 178, 1821 (2006)

    Article  Google Scholar 

  15. N. Docquier, S. Belhalfaoui, F. Lacas, N. Darabiha, C. Rolon, Proc. Combust. Inst. 28, 1765 (2000)

    Article  Google Scholar 

  16. J. Kojima, Y. Ikeda, T. Nakajama, Proc. Combust. Inst. 28, 1757 (2000)

    Article  Google Scholar 

  17. D. Dandy, S. Vosen, Combust. Sci. Technol. 82, 131 (1992)

    Article  Google Scholar 

  18. K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Proc. Combust. Inst. 27, 615 (1998)

    Google Scholar 

  19. J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, K.T. Walsh, M.B. Long, M.D. Smooke, Combust. Flame 122, 172 (2000)

    Article  Google Scholar 

  20. J.-M. Samaniego, F.N. Egolfopoulos, C.T. Bowman, Combust. Sci. Technol. 109, 183 (1995)

    Article  Google Scholar 

  21. H. Tsuji, Prog. Energy Combust. Sci. 8, 93 (1982)

    Article  MathSciNet  Google Scholar 

  22. A.G. Gaydon, H.G. Wolfhard, Flames: Their Structure, Radiation, and Temperature (Chapman and Hall, London, 1978)

    Google Scholar 

  23. M. Slack, A. Grillo, Combust. Flame 59, 189 (1985)

    Article  Google Scholar 

  24. T. Kathrotia, PhD thesis, Naturwisschenschaftlich-Mathematische Gesamtfakultät, Universität Heidelberg (2011). Available online: http://archiv.ub.uniheidelberg.de/volltextserver/volltexte/2011/12027

  25. E. Goos, A. Burcat, B. Ruscic, Rep. ANL 05/20 TAE 960 (2011)

  26. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (this issue)

  27. U. Maas, Appl. Math. 40, 249 (1995)

    MathSciNet  MATH  Google Scholar 

  28. U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988)

    Article  Google Scholar 

  29. J.J. Driscoll, University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, USA (2002)

Download references

Acknowledgements

The authors acknowledge funding of this work by the Deutsche Forschungsgemeinschaft (DFG) within the collaborative program ‘Chemilumineszenz und Wärmefreisetzung’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dreier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabasena, B., Röder, M., Kathrotia, T. et al. Strain rate and fuel composition dependence of chemiluminescent species profiles in non-premixed counterflow flames: comparison with model results. Appl. Phys. B 107, 561–569 (2012). https://doi.org/10.1007/s00340-012-4989-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4989-6

Keywords

Navigation