Skip to main content
Log in

Using frequency-narrowed, tunable laser diode arrays with integrated volume holographic gratings for spin-exchange optical pumping at high resonant fluxes and xenon densities

  • Invited Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Next-generation laser diode arrays with integrated ‘on-chip’ volume holographic gratings can provide high power with spectrally narrowed output that can be tuned about the rubidium D1 line—without causing significant changes to the laser’s flux or spectral profile. These properties were exploited to independently evaluate the effects of varying the laser centroid wavelength and power on batch-mode Rb/129Xe spin-exchange optical pumping (SEOP) as functions of xenon partial pressure and cell temperature. Locally optimized SEOP was often achieved with the laser tuned to either the red or blue side of the Rb D1 line; global optimization of SEOP was observed at lower cell temperatures and followed the D1 absorption profile, which was asymmetrically broadened and red-shifted from the nominal wavelength. The complex dependence of the optimal wavelength for laser excitation on the cell temperature and Xe density appears to result from an interplay between cell illumination and the Rb/129Xe spin-exchange rate, as well as [Xe]cell-dependent changes to the Rb absorption lineshape that are in qualitative agreement with expectations based on previous work [Romalis et al., Phys. Rev. A, 56:4569–4578, (1997)], but significantly greater in magnitude. These next-generation lasers provide a ∼2–3-fold improvement in 129Xe polarization compared to conventional broadband lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Portions of this work were presented previously in [33, 34, 37], and [41].

  2. Rb runaway [44] involves increases to [Rb]cell due to laser-induced cell heating that occurs in a self-reinforcing fashion (i.e., heat from the absorbed laser light increases [Rb]cell, which then elevates laser light absorption, leading to even more heating and further increases to [Rb]cell and the optical density—and hence worsening illumination throughout the cell). Large regions of ‘dark’ Rb give rise to lower cell-averaged 〈P Rb〉(and hence, P Xe).

  3. SEOP with this laser at full power (∼120 W, ∼1″ collimated beam diameter) typically resulted in lower 129Xe polarization—most likely due to uncontrolled laser heating of the cell. Indeed, once the OP cell reached the desired temperature, the oven heat could be turned off, and the cell temperature maintained simply by laser irradiation. Additionally, starting with a room-temperature OP cell, the laser could still heat the cell enough to induce sufficient Rb vaporization to generate low-field 129Xe NMR signals.

  4. This shared T 3/10 dependence in the van der Waals model arises from the linear dependences that the shift and asymmetry have on the linewidth; the linewidth in this model has a dependence on the average collision velocity, v th, going as \(\propto v_{\mathrm{th}}^{3/5}\), which in turn is given by v th=(2kT/μ)1/2 (where k is Boltzmann’s constant and μ is the reduced mass).

References

  1. T. Walker, W. Happer, Rev. Mod. Phys. 69, 629 (1997)

    Article  ADS  Google Scholar 

  2. W. Happer, E. Miron, S. Schaefer, D. Schreiber, W.A. v. Wijngaarden, X. Zeng, Phys. Rev. A 29, 3092 (1984)

    Article  ADS  Google Scholar 

  3. X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber, W. Happer, Phys. Rev. A 31, 260 (1985)

    Article  ADS  Google Scholar 

  4. G.D. Cates, R.J. Fitzgerald, A.S. Barton, P. Bogorad, M. Gatzke, N.R. Newbury, B. Saam, Phys. Rev. A 45, 4631 (1992)

    Article  ADS  Google Scholar 

  5. S. Appelt, A.B.-A. Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Phys. Rev. A 58, 1412 (1998)

    Article  ADS  Google Scholar 

  6. B. Chann, E. Babcock, L.W. Anderson, T.G. Walker, Phys. Rev. A 66 (2002)

  7. B.M. Goodson, J. Magn. Reson. 155, 157 (2002)

    Article  ADS  Google Scholar 

  8. A. Bifone, A. Cherubini, Prog. Nucl. Magn. Reson. Spectrosc. 42, 1 (2003)

    Article  Google Scholar 

  9. J.L. Friar, B.F. Gibson, G.L. Payne, A.M. Bernstein, T.E. Chupp, Phys. Rev. C 42, 2310 (1990)

    Article  ADS  Google Scholar 

  10. P.L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993)

    Article  ADS  Google Scholar 

  11. M.V. Romalis, M.P. Ledbetter, Phys. Rev. Lett. 87, 67601 (2001)

    Article  ADS  Google Scholar 

  12. S.W. Morgan, B.V. Fine, B. Saam, Phys. Rev. Lett. 101, 067601 (2008)

    Article  ADS  Google Scholar 

  13. M.E. Wagshul, T.E. Chupp, Phys. Rev. A 40, 4447 (1989)

    Article  ADS  Google Scholar 

  14. P. Nikolaou, N. Whiting, N.A. Eschmann, K.E. Chaffee, M. Barlow, B.M. Goodson, J. Magn. Reson. 197, 249 (2009)

    Article  ADS  Google Scholar 

  15. B. Chann, I. Nelson, T.G. Walker, Opt. Lett. 25, 1352 (2000)

    Article  ADS  Google Scholar 

  16. H. Zhu, I.C. Ruset, F.W. Hersman, Opt. Lett. 30, 1342 (2005)

    Article  ADS  Google Scholar 

  17. E. Babcock, B. Chann, I.A. Nelson, T. Walker, Appl. Opt. 44, 3098 (2005)

    Article  ADS  Google Scholar 

  18. J.N. Zerger, M.J. Lim, K.P. Coulter, T.E. Chupp, Appl. Phys. Lett. 76, 1798 (2000)

    Article  ADS  Google Scholar 

  19. M.J. Barlow, in 47th Exptl. Nucl. Magn. Reson. Conf., Pacific Grove, CA, 2006 (unpublished)

  20. N. Whiting, P. Nikolaou, N. Eschmann, M. Barlow, B.M. Goodson, J. Magn. Reson. 208, 298 (2011)

    Article  ADS  Google Scholar 

  21. S.R. Parnell, M. Deppe, J. Parra-Robles, J.M. Wild, J. Appl. Phys. 108, 064901 (2010)

    Article  ADS  Google Scholar 

  22. M.V. Romalis, E. Miron, G.D. Cates, Phys. Rev. A 56, 4569 (1997)

    Article  ADS  Google Scholar 

  23. A.H. Couture, T.B. Clegg, B. Driehuys, J. Appl. Phys. 104, 094912 (2008)

    Article  ADS  Google Scholar 

  24. C. Ottinger, R. Scheps, G.W. York, A. Gallagher, Phys. Rev. A 11, 1815 (1975)

    Article  ADS  Google Scholar 

  25. V.V. Gershun, V. Khutorschikov, N.N. Yakobson, Opt. Spektrosk. 31, 866 (1971)

    Google Scholar 

  26. M. Takeo, S.Y. Chen, J. Quant. Spectrosc. Radiat. Transf. 4, 471 (1963)

    Article  ADS  Google Scholar 

  27. B. Driehuys, in American Physics Society: Division of Molecular, Atomic, and Optical Physics, Charlottesville, VA, 2009 (unpublished)

  28. C. Moser, G. Steckman, Photonics Spectra 39, 82 (2005)

    Google Scholar 

  29. B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Opt. Lett. 29, 1891 (2004)

    Article  ADS  Google Scholar 

  30. B.L. Volodin, S.V. Dolgy, E. Downs, E.D. Melnik, J. Shaw, V.S. Ban, E. McIntyre, Photonics Spectra 37, 68 (2003)

    Google Scholar 

  31. C. Moser, L. Ho, E. Maye, F. Havermeyer, J. Phys. D, Appl. Phys. 41, 1 (2008)

    Article  Google Scholar 

  32. N. Whiting, N.A. Eschmann, M.J. Barlow, B.M. Goodson, Phys. Rev. A 83, 053428 (2011)

    Article  ADS  Google Scholar 

  33. M. Barlow, N. Eschmann, N. Whiting, P. Nikolaou, B.M. Goodson, in 50th Exptl. Nucl. Magn. Reson. Conf., Pacific Grove, CA, 2009 (unpublished)

  34. M.J. Barlow, P. Nikolaou, N. Whiting, N. Eschmann, B.M. Goodson, C.-H. Li, R.W. Mair, M.S. Rosen, R.L. Walsworth, in 49th Experimental Nucl. Magn. Reson. Conference, Asilomar, CA, 2008 (unpublished)

  35. L. Vaissie, Photonics Online White Paper (2010)

  36. L. Vaissie, BioOptics World (2009)

  37. M. Barlow, N. Eschmann, N. Whiting, P. Nikolaou, B.M. Goodson, in 51st Exp. Nucl. Magn. Reson. Conf., Daytona Beach, FL, 2010 (unpublished)

  38. I. Saha, P. Nikolaou, N. Whiting, B.M. Goodson, Chem. Phys. Lett. 428, 268 (2006)

    Article  ADS  Google Scholar 

  39. M.S. Rosen, T.E. Chupp, K.P. Coulter, R.C. Welsh, S.D. Swanson, Rev. Sci. Instrum. 70, 1546 (1999)

    Article  ADS  Google Scholar 

  40. N. Whiting, P. Nikolaou, N. Eschmann, M.J. Barlow, B.M. Goodson, in 49th Exptl. Nucl. Magn. Reson. Conf., Asilomar, CA, 2008 (unpublished)

  41. N. Whiting, P. Nikolaou, N. Eschmann, M. Barlow, B.M. Goodson, in 50th Exptl. Nucl. Magn. Reson. Conf., Pacific Grove, CA, 2009 (unpublished)

  42. D.K. Walter, W.M. Griffith, W. Happer, Phys. Rev. Lett. 86, 3264 (2001)

    Article  ADS  Google Scholar 

  43. D.A. Steck, [http://steck.us/alkalidata], rev. 2.1.1 (2009)

  44. A.L. Zook, B.B. Adhyaru, C.R. Bowers, J. Magn. Reson. 159, 175 (2002)

    Article  ADS  Google Scholar 

  45. C.V. Rice, D. Raftery, J. Chem. Phys. 117, 5632 (2002)

    Article  ADS  Google Scholar 

  46. M.P. Augustine, K.W. Zilm, Chem. Phys. Lett. 280, 24 (1997)

    Article  ADS  Google Scholar 

  47. Y.-Y. Jau, N.N. Kuzma, W. Happer, Phys. Rev. A 66, 052710 (2002)

    Article  ADS  Google Scholar 

  48. W. Shao, G. Wang, E.W. Hughes, Phys. Rev. A 72, 022713 (2005)

    Article  ADS  Google Scholar 

  49. Y.-Y. Jau, N.N. Kuzma, W. Happer, Phys. Rev. A 67, 022720 (2003)

    Article  ADS  Google Scholar 

  50. Z. Wu, M. Kitano, W. Happer, M. Hou, J. Daniels, Appl. Opt. 28, 4483 (1986)

    Article  ADS  Google Scholar 

  51. T.J. Killian, Phys. Rev. 27, 578 (1926)

    Article  ADS  Google Scholar 

  52. B. Driehuys, G.D. Cates, E. Miron, K. Sauer, D.K. Walter, W. Happer, Appl. Phys. Lett. 69, 1668 (1996)

    Article  ADS  Google Scholar 

  53. A.R. Young, S. Appelt, A.B.-A. Baranga, C. Erickson, W. Happer, Appl. Phys. Lett. 70, 3081 (1997)

    Article  ADS  Google Scholar 

  54. A.B.-A. Baranga, S. Appelt, C. Erickson, A.R. Young, W. Happer, Phys. Rev. A 58, 2282 (1998)

    Article  ADS  Google Scholar 

  55. G. Schrank, Z. Ma, A. Schoeck, B. Saam, Phys. Rev. A 80, 063424 (2009)

    Article  ADS  Google Scholar 

  56. N. Whiting, M. Barlow, H. Newton, L.L. Walkup, P. Nikolaou, B.M. Goodson, in 52nd Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA, 2011 (unpublished)

  57. K. Ranta, L.L. Walkup, N. Whiting, P. Nikolaou, M. Barlow, B.M. Goodson, in 52nd Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA, 2011 (unpublished)

  58. B. Driehuys, G.P. Cofer, J. Pollaro, J.B. Mackel, L.W. Hedlund, G.A. Johnson, Proc. Natl. Acad. Sci. USA 103, 18278 (2006)

    Article  ADS  Google Scholar 

  59. S. Patz, F.W. Hersman, I. Muradian, M. Hrovat, I.C. Ruset, S. Ketel, F. Jacobson, G. Topulos, H. Hatabu, J. Butler, Eur. J. Radiol. 64, 335 (2007)

    Article  Google Scholar 

  60. B.M. Goodson, Concepts Magn. Reson. 11, 203 (1999)

    Article  Google Scholar 

  61. L. Schroder, T. Lowery, C. Hilty, D. Wemmer, A. Pines, Science 314, 446 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. B. Saam (U. of Utah), G. Schrank (PNNL), M. McCarroll (SIUC), and A. Coy (Magritek) for helpful conversations and correspondence; G. Moroz (SIUC) for expert machining; and the late K. Owens (UMSL) for glassblowing. N.W. is currently supported by the NSF International Research Fellowship Program (OISE-0966393). B.M.G. is a Cottrell Scholar of Research Corporation. Work at SIUC was supported by NSF (CAREER CHE-0349255, REU DMR-0552800), Research Corporation, and SIU ORDA & MTC. M.J.B acknowledges the generous support of the School of Medical & Surgical Sciences, University of Nottingham and GE Healthcare-Amersham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Goodson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 630 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiting, N., Nikolaou, P., Eschmann, N.A. et al. Using frequency-narrowed, tunable laser diode arrays with integrated volume holographic gratings for spin-exchange optical pumping at high resonant fluxes and xenon densities. Appl. Phys. B 106, 775–788 (2012). https://doi.org/10.1007/s00340-012-4924-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4924-x

Keywords

Navigation