Skip to main content
Log in

N2O molecular tagging velocimetry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide “laughing gas” is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser “writes” the original position of the NO line. After a time delay, the shifted NO line is “read” by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ∼1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800–1200 ppm of NO for 190–750 K at 1 atm and 850–1000 ppm of NO for 0.25–1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. k=AT nexp(−E/RT), reaction rates for A are in [cm3-mol-sec-K] units, T [K], E [cal/mol].

  2. NO formation time shown in Fig. 6c is consistent with an estimate based on the (R2) rate constant of k 2=7.2×10−11 cm3/molecules [34] under standard conditions. With this rate constant, the time of formation of 63% of the steady-state NO concentration (at STP) is \(1/(2k_{2}n_{\mathrm{N}_{2}\mathrm{O}}) \approx 10\ \mbox{ns}\) where \(n_{\mathrm{N}_{2}\mathrm{O}}\) is the N2O number density after dissociation.

References

  1. R.J. Adrian, J. Westerweel, Particle Image Velocimetry (Cambridge University Press, New York, 2010)

    Google Scholar 

  2. S. Koike, H. Takahashi, K. Tanaka, M. Hirota, K. Takita, G. Masuya, AIAA J. 45, 2770 (2007)

    Article  ADS  Google Scholar 

  3. R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, R33 (2001)

    Article  ADS  Google Scholar 

  4. M. Zimmermann, R.B. Miles, Appl. Phys. Lett. 37, 885 (1980)

    Article  ADS  Google Scholar 

  5. J.C. McDaniel, B. Hiller, R.K. Hanson, Opt. Lett. 8, 51 (1983)

    Article  ADS  Google Scholar 

  6. W.J. Marinelli, W.J. Kessler, M.G. Allen, S.J. Davis, S. Arepalli, C.D. Scott, in 29th AIAA Aerospace Sciences Meeting (1991), paper 91-0358

    Google Scholar 

  7. P.H. Paul, M.P. Lee, R.K. Hanson, Opt. Lett. 14, 417 (1989)

    Article  ADS  Google Scholar 

  8. M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, D. Sonnenfroh, AIAA J. 32, 1676 (1994)

    Article  ADS  Google Scholar 

  9. K.G. Klavuhn, G. Gauba, J.C. McDaniel, J. Propuls. Power 10, 787 (1994)

    Article  ADS  Google Scholar 

  10. R.G. Seasholtz, F.J. Zupanc, S.J. Schneider, J. Propuls. Power 8, 935 (1992)

    Article  ADS  Google Scholar 

  11. J.N. Forkey, N.D. Finkelstein, W.R. Lempert, R.B. Miles, AIAA J. 34, 442 (1996)

    Article  ADS  Google Scholar 

  12. R.B. Miles, W. Lempert, B. Zhang, Fluid Dyn. Res. 8, 9 (1991)

    Article  ADS  Google Scholar 

  13. R.W. Pitz, T.M. Brown, S.P. Nandula, P.A. Skaggs, P.A. DeBarber, M.S. Brown, J. Segall, Opt. Lett. 21, 755 (1996)

    Article  ADS  Google Scholar 

  14. L.A. Ribarov, J.A. Wehrmeyer, F. Batliwala, R.W. Pitz, P.A. DeBarber, AIAA J. 37, 708 (1999)

    Article  ADS  Google Scholar 

  15. R.W. Pitz, J.A. Wehrmeyer, L.A. Ribarov, D.A. Oguss, F. Batliwala, P.A. DeBarber, S. Deusch, P.E. Dimotakis, Meas. Sci. Technol. 11, 1259 (2000)

    Article  ADS  Google Scholar 

  16. L.R. Boedecker, Opt. Lett. 14, 473 (1989)

    Article  ADS  Google Scholar 

  17. D.F. Davidson, A.Y. Chang, M.D. DiRosa, R.K. Hanson, Appl. Opt. 30, 2598 (1991)

    Article  ADS  Google Scholar 

  18. J.A. Wehrmeyer, L.A. Ribarov, D.A. Oguss, R.W. Pitz, Appl. Opt. 38, 6912 (1999)

    Article  ADS  Google Scholar 

  19. L.A. Ribarov, J.A. Wehrmeyer, R.W. Pitz, R.A. Yetter, Appl. Phys. B 74, 175 (2002)

    Article  ADS  Google Scholar 

  20. R.W. Pitz, M.D. Lahr, Z.W. Douglas, J.A. Wehrmeyer, S. Hu, C.D. Carter, K.Y. Hsu, C. Lum, M.M. Koochesfahani, Appl. Opt. 44, 6692 (2005)

    Article  ADS  Google Scholar 

  21. M.D. Lahr, R.W. Pitz, Z.W. Douglas, C.D. Carter, J. Propuls. Power 26, 790 (2010)

    Article  Google Scholar 

  22. M.C. Ramsey, R.W. Pitz, T.P. Jenkins, Y. Matsutomi, C. Yoon, W.E. Anderson, Shock Waves 22, 39 (2011)

    Article  ADS  Google Scholar 

  23. A.F.P. Houwing, D.R. Smith, J.S. Fox, P.M. Danehy, N.R. Mudford, Shock Waves 11, 31 (2001)

    Article  ADS  Google Scholar 

  24. P.M. Danehy, S. O’Byrne, A.F.P. Houwing, J.S. Fox, D.R. Smith, AIAA J. 41, 263 (2003)

    Article  ADS  Google Scholar 

  25. A.G. Hsu, R. Srinivasan, R.D.W. Bowersox, S.W. North, Appl. Opt. 48, 4414 (2009)

    Article  ADS  Google Scholar 

  26. N. Dam, R.J.H. Klein-Douwel, N.M. Sijtsema, J.J. ter Meulen, Opt. Lett. 26, 36 (2001)

    Article  ADS  Google Scholar 

  27. C. Orlemann, C. Schulz, J. Wolfrum, Chem. Phys. Lett. 307, 15 (1999)

    Article  ADS  Google Scholar 

  28. S. Nakaya, M. Kasahara, M. Tsue, M. Kono, Heat Transf. Asian Res. 34, 40 (2005)

    Article  Google Scholar 

  29. A.G. Hsu, R. Srinivasan, R.D.W. Bowersox, S.W. North, AIAA J. 47, 2597 (2009)

    Article  Google Scholar 

  30. N. Jiang, M. Nishihara, W.R. Lempert, Appl. Phys. Lett. 97, 221103 (2010)

    Article  ADS  Google Scholar 

  31. S. Krüger, G. Grünefeld, Appl. Phys. B 69, 509 (1999)

    Article  ADS  Google Scholar 

  32. U. Westblom, M. Aldén, Appl. Opt. 29, 4844 (1990)

    Article  ADS  Google Scholar 

  33. C.D. Carter, R.S. Barlow, Opt. Lett. 19, 299 (1994)

    Article  ADS  Google Scholar 

  34. M. Tsuji, J. Kumagae, T. Tsuji, T. Hamagami, J. Hazard. Mater. B 108, 189 (2004)

    Article  Google Scholar 

  35. G. Selwyn, J. Podolske, H.S. Johnston, Geophys. Res. Lett. 4, 427 (1977)

    Article  ADS  Google Scholar 

  36. G. Laufer, R.L. McKenzie, W.M. Huo, Opt. Lett. 13, 99 (1988)

    Article  ADS  Google Scholar 

  37. A.M. Wodtke, L. Huwel, H. Schluter, G. Meijer, P. Andresen, H. Voges, Opt. Lett. 13, 910 (1988)

    Article  ADS  Google Scholar 

  38. M.C. Ramsey, R.W. Pitz, Exp. Fluids 51, 811 (2011)

    Article  Google Scholar 

  39. R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson Jr., J.A. Kerr, M.J. Rossi, J. Troe, J. Phys. Chem. Ref. Data 26, 1329 (1997)

    Article  ADS  Google Scholar 

  40. R.F. Heidner III, D. Husain, Int. J. Chem. Kinet. 5, 819 (1973)

    Article  Google Scholar 

  41. V.M. Doroshenko, N.N. Kudryavtsev, V.V. Smetanin, High Energy Chem. 26, 227 (1992)

    Google Scholar 

  42. A.A. Borisov, V.M. Zamanskii, G.I. Skachkov, Kinet. Catal. 19, 26 (1978)

    Google Scholar 

  43. W. Tsang, J.T. Herron, J. Phys. Chem. Ref. Data 20, 609 (1991)

    Article  ADS  Google Scholar 

  44. M.S. van Hemert, R. van Harrevelt, private communication, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, The Netherlands (1999)

Download references

Acknowledgements

Dr. Ayman M. ElBaz is grateful to the Fulbright Egyptian Scholar Program for supporting his research experience at Vanderbilt University. RWP acknowledges support by the Air Force Office of Scientific Research, Combustion and Diagnostics Program. The authors thank Dr. Campbell Carter at the Air Force Research Laboratories for the suggesting photodissociation of N2O as a possible MTV method. We also thank Mr. Marc Ramsey at Vanderbilt University for technical advice and help in this effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Pitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElBaz, A.M., Pitz, R.W. N2O molecular tagging velocimetry. Appl. Phys. B 106, 961–969 (2012). https://doi.org/10.1007/s00340-012-4872-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4872-5

Keywords

Navigation