Skip to main content
Log in

Linear Paul trap design for an optical clock with Coulomb crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10−18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high-precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second-order Doppler shift contributes less than 10−18 to the relative uncertainty of the frequency standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Neuhauser, M. Hohenstatt, P.E. Toschek, H. Dehmelt, Phys. Rev. A 22, 1137 (1980)

    Article  ADS  Google Scholar 

  2. F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2010)

    Google Scholar 

  3. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  4. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  5. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  6. W. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Phys. Rev. A 47, 3554 (1993)

    Article  ADS  Google Scholar 

  7. D. Meiser, J. Ye, D.R. Carlson, M.J. Holland, Phys. Rev. Lett. 102, 163601 (2009)

    Article  ADS  Google Scholar 

  8. J. Millo, D.V. Magalhães, C. Mandache, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79, 053829 (2009)

    Article  ADS  Google Scholar 

  9. T. Legero, T. Kessler, U. Sterr, J. Opt. Soc. Am. A 27, 914 (2010)

    Article  ADS  Google Scholar 

  10. A. Bjerhammar, Bull. Géod. 59, 207 (1985)

    Article  Google Scholar 

  11. N.K. Pavlis, M.A. Weiss, in IEEE International Frequency Control Symposium (2007), p. 642

    Google Scholar 

  12. F. Riehle, Frequency Standards: Basics and Applications (Wiley/VCH, New York/Weinheim, 2005)

    Google Scholar 

  13. J.D. Prestage, S.K. Chung, L. Lim, A. Matevosian, in IEEE International Frequency Control Symposium (2007), p. 1112

    Google Scholar 

  14. C. Champenois, M. Marciante, J. Pedregosa-Gutierrez, M. Houssin, M. Knoop, M. Kajita, Phys. Rev. A 81, 043410 (2010)

    Article  ADS  Google Scholar 

  15. P. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Science 309, 749 (2005)

    Article  ADS  Google Scholar 

  16. T. Rosenband, P.O. Schmidt, D.B. Hume, W.M. Itano, T.M. Fortier, J.E. Stalnaker, K. Kim, S.A. Diddams, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Phys. Rev. Lett. 98, 220801 (2007)

    Article  ADS  Google Scholar 

  17. D. Wineland, R. Blatt, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  18. Th. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.n. Harlander, W. Haensel, M. Hennrich, R. Blatt, arXiv:1009.6126v1 (2010)

  19. Ch. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  20. J.M. Amini, J. Britton, D. Leibfried, D.J. Wineland, arXiv:0812.3907v1 (2008)

  21. D. Kielpinski, C.R. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  22. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  23. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998)

    Article  ADS  Google Scholar 

  24. R.H. Dicke, Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  25. K. Pyka, N. Herschbach, J. Keller, T.E. Mehlstäubler, New J. Phys. (in preparation)

  26. C. Zipkes, S. Palzer, C. Sias, M. Köhl, Nature 464, 388 (2010)

    Article  ADS  Google Scholar 

  27. E. Peik, G. Hollemann, H. Walther, Phys. Rev. A 49, 402 (1994)

    Article  ADS  Google Scholar 

  28. T. Liu, Y. Wang, V. Elman, A. Stejskal, Y. Zhao, J. Zhang, Z. Lu, L. Wang, R. Dumke, T. Becker, H. Walther, in IEEE International Frequency Control Symposium (2007), p. 407

    Google Scholar 

  29. J.A. Sherman, W. Trimble, S. Metz, W. Nagourney, N. Fortson, arXiv:physics/0504013v2 (2005)

  30. Ch. Schwedes, E. Peik, J. von Zanthier, A.Yu. Nevsky, H. Walther, Appl. Phys. B 76, 143 (2003)

    Article  ADS  Google Scholar 

  31. K. Sugiyama, J. Yoda, Phys. Rev. A 55, R10 (1997)

    Article  ADS  Google Scholar 

  32. M.S. Safronova, M.G. Kozlov, arXiv:1105.3233 (2011)

  33. T. Rosenband, W.M. Itano, P.O. Schmidt, D.B. Hume, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, in Proceedings of the 20th European Time and Frequency Forum (2006), p. 289

    Google Scholar 

  34. E. Peik, J. Abel, Th. Becker, J. von Zanthier, H. Walther, Phys. Rev. A 60, 439 (1999)

    Article  ADS  Google Scholar 

  35. L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  36. R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  37. J.E. Bernard, L. Marmet, A.A. Madej, Opt. Commun. 150, 170 (1998)

    Article  ADS  Google Scholar 

  38. Th. Becker, J.v. Zanthier, A.Yu. Nevsky, Ch. Schwedes, M.N. Skvortsov, H. Walther, E. Peik, Phys. Rev. A 63, 051802 (2001)

    Article  ADS  Google Scholar 

  39. G.D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan, Europhys. Lett. 86, 60004 (2009)

    Article  ADS  Google Scholar 

  40. H.C. Nägerl, F. Schmidt-Kaler, J. Eschner, R. Blatt, W. Lange, H. Baldauf, H. Walther, The Physics of Quantum Information (Springer, Berlin, 2000)

    Google Scholar 

  41. S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)

    Article  ADS  Google Scholar 

  42. M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Monroe, Appl. Phys. B 78, 639 (2004)

    Article  ADS  Google Scholar 

  43. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B. King, D.M. Meekhof, J. Res. Natl. Bur. Stand. Tech. 103, 259 (1998)

    Article  Google Scholar 

  44. A. Steane, Appl. Phys. B 64, 623 (1997)

    Article  ADS  Google Scholar 

  45. D.H.E. Dubin, Phys. Rev. Lett. 71, 2753 (1993)

    Article  ADS  Google Scholar 

  46. H. Totsuji, J.-L. Barrat, Phys. Rev. Lett. 60, 2484 (1988)

    Article  ADS  Google Scholar 

  47. J.P. Schiffer, Phys. Rev. Lett. 70, 818 (1993)

    Article  ADS  Google Scholar 

  48. D.J. Wineland, W.M. Itano, J.C. Bergquist, R.G. Hulet, Phys. Rev. A 36, 2220 (1987)

    Article  ADS  Google Scholar 

  49. I. Babuska, T. Strouboulis, The Finite Element Method and Its Reliability (Oxford University Press, New York, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Mehlstäubler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herschbach, N., Pyka, K., Keller, J. et al. Linear Paul trap design for an optical clock with Coulomb crystals. Appl. Phys. B 107, 891–906 (2012). https://doi.org/10.1007/s00340-011-4790-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4790-y

Keywords

Navigation