Abstract
Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally geometrically collimated on the substrate. These beams have local offset angles with respect to the substrate. We show that this affects the height, width, shape, and position of the created structures. We find that simulated effects are partially obscured in experiments by substrate-dependent diffusion of atoms, while scattering and interference just above the substrate limit the quality of the standing wave lens. We find that in atom lithography without laser cooling the atom beam source geometry is imaged onto the substrate by the standing wave lens. We therefore propose using structured atom beam sources to image more complex patterns on subwavelength scales in a massively parallel way.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
G. Timp, R.E. Behringer, D.M. Tennant, J.E. Cunningham, M. Prentiss, K.K. Berggren, Phys. Rev. Lett. 69, 1636 (1992). doi:10.1103/PhysRevLett.69.1636
J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta, Science 262, 877 (1993). doi:10.1126/science.262.5135.877
R.W. McGowan, D.M. Giltner, S.A. Lee, Opt. Lett. 20, 2535 (1995). doi:10.1364/OL.20.002535
R. Ohmukai, S. Urabe, M. Watanabe, Appl. Phys. B, Lasers Opt. 77, 415 (2003). doi:10.1007/s00340-003-1281-9
E. te Sligte, B. Smeets, K.M.R. van der Stam, R.W. Herfst, P. van der Straten, H.C.W. Beijerinck, K.A.H. van Leeuwen, Appl. Phys. Lett. 85, 4493 (2004). doi:10.1063/1.1818347
G. Myszkiewicz, J. Hohlfeld, A.J. Toonen, A.F.V. Etteger, O.I. Shklyarevskii, W.L. Meerts, T. Rasing, E. Jurdik, Appl. Phys. Lett. 85, 3842 (2004). doi:10.1063/1.1811804
R. Gupta, J.J. McClelland, Z.J. Jabbour, R.J. Celotta, Appl. Phys. Lett. 67, 1378 (1995). doi:10.1063/1.115539
U. Drodofsky, J. Stuhler, T. Schulze, M. Drewsen, B. Brezger, T. Pfau, J. Mlynek, Appl. Phys. B, Lasers Opt. 65, 755 (1997). doi:10.1007/s003400050342
E. Jurdik, G. Myszkiewicz, J. Hohlfeld, A. Tsukamoto, A.J. Toonen, A.F. van Etteger, J. Gerritsen, J. Hermsen, S. Goldbach-Aschemann, W.L. Meerts, H. van Kempen, T. Rasing, Phys. Rev. B 69, 201102 (2004). doi:10.1103/PhysRevB.69.201102
M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, K. Buse, Phys. Rev. Lett. 88, 083601 (2002). doi:10.1103/PhysRevLett.88.083601
D. Jürgens, A. Greiner, R. Stützle, A. Habenicht, E. te Sligte, M.K. Oberthaler, Phys. Rev. Lett. 93, 237402 (2004). doi:10.1103/PhysRevLett.93.237402
R. Gupta, J.J. McClelland, P. Marte, R.J. Celotta, Phys. Rev. Lett. 76, 4689 (1996). doi:10.1103/PhysRevLett.76.4689
D. Meschede, H. Metcalf, J. Phys. D, Appl. Phys. 36, R17 (2003).
V. Balykin, P. Melentiev, Nanotechnol. Russ. 4, 425 (2009). doi:10.1134/S1995078009070040
M.D. Hoogerland, J.P.J. Driessen, E.J.D. Vredenbregt, H.J.L. Megens, M.P. Schuwer, H.C.W. Beijerinck, K.A.H. van Leeuwen, Appl. Phys. B, Lasers Opt. 62, 323 (1996). doi:10.1007/BF01081192
S. Rehse, R. McGowan, S. Lee, Appl. Phys. B, Lasers Opt. 70, 657 (2000). doi:10.1007/s003400050876
B. Smeets, P. van der Straten, T. Meijer, C. Fabrie, K. van Leeuwen, Appl. Phys. B, Lasers Opt. 98, 697 (2010). doi:10.1007/s00340-009-3867-3
J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985). doi:10.1364/JOSAB.2.001707
R.C.M. Bosch, H.C.W. Beijerinck, P. van der Straten, K.A.H. van Leeuwen, Eur. Phys. J. Appl. Phys. 18, 221 (2002). doi:10.1051/epjap:2002042
B. Smeets, R. Bosch, P. van der Straten, E. te Sligte, R. Scholten, H. Beijerinck, K. van Leeuwen, Appl. Phys. B, Lasers Opt. 76, 815 (2003). doi:10.1007/s00340-003-1228-1
W.R. Anderson, C.C. Bradley, J.J. McClelland, R.J. Celotta, Phys. Rev. A 59, 2476 (1999). doi:10.1103/PhysRevA.59.2476
E. te Sligte, K.M.R. van der Stam, B. Smeets, P. van der Straten, R.E. Scholten, H.C.W. Beijerinck, K.A.H. van Leeuwen, J. Appl. Phys. 95, 1749 (2004). doi:10.1063/1.1638613
E. Jurdik, T. Rasing, H. van Kempen, C.C. Bradley, J.J. McClelland, Phys. Rev. B 60, 1543 (1999). doi:10.1103/PhysRevB.60.1543
J. Zhong, J.C. Wells, Y. Braiman, J. Vac. Sci. Technol. B 20, 2758 (2002). doi:10.1116/1.1520558
T.N. Tun, M.H.T. Lwin, H.H. Kim, N. Chandrasekhar, C. Joachim, Nanotechnology 18, 335301 (2007). doi:10.1088/0957-4484/18/33/335301
R.E. Behringer, V. Natarajan, G. Timp, D.M. Tennant, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14, 4072 (1996). doi:10.1116/1.588647
A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, 1963)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Meijer, T., Beardmore, J.P., Fabrie, C.G.C.H.M. et al. Structure formation in atom lithography using geometric collimation. Appl. Phys. B 105, 703–713 (2011). https://doi.org/10.1007/s00340-011-4743-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-011-4743-5