Skip to main content
Log in

Two-dimensional atom localization by absorption spectrum using superposition of two super-Gaussian beams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Atom microscopy is controlled and modified by absorption spectrum of a weak probe field using the superposition of two super-Gaussian beams. Circular and elliptical localization peaks are investigated with variance, power and direction of the super-Gaussian beams. The shape of localization peaks depends upon the variance of the standard deviation and power of the super-Gaussian beams. Depth elliptical localization peaks are also controlled and modified with direction and variance of super-Gaussian beams. The modified results show significance in advanced nano-lithography and high technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Stern, B. Desiatov, I. Goykhman et al., Nanoscale light-matter interactions in atomic cladding waveguides. Nat. Commun. 4, 1548 (2013)

    Article  ADS  Google Scholar 

  2. W. Ahmad, B.A. Bacha, U. Wahid, A. Ullah, M. Haneef, Distortion-free conductivity-dependent temporal cloak based on tunnelling chiral medium. Eur. Phys. J. Plus 136, 275 (2021)

    Article  Google Scholar 

  3. F. Zaman, S. Ahmad, S.M. Arif, M. Haneef, Tunable phase control of rotary photon drag by superposition of three probes coherence in atomic medium. Eur. Phys. J. Plus 136, 110 (2021)

    Article  Google Scholar 

  4. W. Ali, J. Ahmad, M. Haneef, B.A. Bacha, H. Khan, A. Abid, B. Khan, A. Dahshan, Distortion management of the pulse without and in the presence of Compton scattering in a three level atomic configuration. Eur. Phys. J. Plus 136, 747 (2021)

    Article  Google Scholar 

  5. S.M. Arif, B.A. Bacha, U. Wahid, M. Haneef, A. Ullah, Tunable subluminal to superluminal propagation via spatio-temporal solitons by application of Laguerre fields intensities. Phys. Lett. A 388, 127041 (2021)

    Article  Google Scholar 

  6. M. Khan, M. Idrees, B.A. Bacha, A. Ullah, M. Haneef, Tunnelling based birefringent rotary photon dragging through induced chiral medium. Phys. Scr. 96, 055101 (2021)

    Article  ADS  Google Scholar 

  7. S. Ali, M. Idrees, B.A. Bacha, A. Ullah, M. Haneef, Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via birefringence beam absorption spectrum. Commun. Theor. Phys. 73, 015102 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.I. Khan, M. Idrees, B.A. Bacha, H. Khan, A. Ullah, M. Haneef, Optical soliton through induced cesium doppler broadening medium. Phys. Scr. 95, 085102 (2020)

    Article  ADS  Google Scholar 

  9. N. Ullah, M. Idrees, M. Ullah, B.A. Bacha, A. Ullah, M. Haneef, High resolution two-dimensional atomic microscopy via superposition of three probe coherences and three standing wave fields. Opt. Quantum Electron. 53, 312 (2021)

    Article  Google Scholar 

  10. H. Khan, M. Haneef, Birefringence in a chiral medium, via temporal cloaking. Laser Phys. 27, 055201 (2017)

    Article  ADS  Google Scholar 

  11. M. Junaid, B.A. Bacha, M. Haneef, S.M. Arif, K. Ali, M. Usman, Manipulation of rotary photon drag in the region of spectral hole burning. Eur. Phys. J. Plus 137, 424 (2022)

    Article  Google Scholar 

  12. M. Irshad, M. Idrees, A. Ahmad, M. Ullah, M. Haneef, Distortion free subluminal to superluminal pulse propagation in four-level atomic medium. Opt. Quantum Electron. 53, 679 (2021)

    Article  Google Scholar 

  13. M. Bakhtawar, B.A. Haneef, H. Bacha, M. Khan, Atif, Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect. Chin. Phys. B. 27, 114215 (2018)

  14. H. Khan, M. Haneef, Bakhtawar, Space-time cloaks through birefringent Goos-H\(\ddot{a}\)nchen shifts. Chin. Opt. Lett. 17(3), 032701 (2018)

  15. B. Shoaib, M. Haneef, B.A. Bacha, H. Khan, Bakhtawar, Surface plasmon polariton fizeaus dragging: via relative rotational sensing. Commun. Theor. Phys. 71(4), 435 (2019)

  16. R. Khan, M. Iqbal, M. Haneef, B.A. Bacha, H. Khan, B. Mariam, Effect of the atomic dipole relaxation and the pulse width on temporal cloaking. Laser Phys. 29, 045403 (2019)

    Article  ADS  Google Scholar 

  17. M. Qayum, B.A. Bacha, H. Khan, J. Akbar, M. Haneef, Implications of Compton scattering and inverse Doppler effect on the manipulation of Goos-H\(\ddot{a}\)nchen shifts. Optik 219, 165306 (2020)

    Article  ADS  Google Scholar 

  18. K.T. Kapale, G.S. Agarwal, Subnanoscale resolution for microscopy via coherent population trapping. Opt. Lett. 35(16), 2792–2794 (2010)

    Article  ADS  Google Scholar 

  19. G.S. Agarwal, K.T. Kapale, Subwavelength atom localization via coherent population trapping. J. Phys. B At. Mol. Opt. Phys. 39, 3437 (2006)

    Article  ADS  Google Scholar 

  20. W.D. Phillips, Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  21. J. Yuan, C. Wu, L. Wang, G. Chen, S. Jia, Observation of diffraction pattern in two-dimensional optically induced atomic lattice. Opt. Lett. 44, 4123 (2019)

    Article  ADS  Google Scholar 

  22. A.V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, M.D. Lukin, Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008)

    Article  ADS  Google Scholar 

  23. G.P. Collins, Phys. Today 49, 18 (1996)

    Google Scholar 

  24. F.L. Kien, G. Rempe, W.P. Schleich, M.S. Zubairy, Atom localization via Ramsey interferometry: a coherent cavity field provides a better resolution. Phys. Rev. A 56, 2972 (1997)

    Article  ADS  Google Scholar 

  25. P. Storey, M. Collett, D. Walls, Measurement-induced diffraction and interference of atoms. Phys. Rev. Lett. 68, 472 (1997)

    Article  ADS  Google Scholar 

  26. S. Kunze, K. Dieckmann, G. Rempe, Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038 (1997)

    Article  ADS  Google Scholar 

  27. J.E. Thomas, Uncertainty-limited position measurement of moving atoms using optical fields. Opt. Lett. 14, 1186 (1989)

    Article  ADS  Google Scholar 

  28. S. Qamar, S.Y. Zhu, M.S. Zubairy, Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)

    Article  ADS  Google Scholar 

  29. F. Wang, J. Xu, Two-dimensional atom localization induced by a squeezed vacuum. Chin. Phys. B 25, 104201 (2016)

    Article  ADS  Google Scholar 

  30. M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys Rev. A 72(1), 013820 (2005)

    Article  ADS  Google Scholar 

  31. K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 73(2), 023813 (2006)

    Article  ADS  Google Scholar 

  32. F. Ghafoor, S. Qamar, M.S. Zubairy, Atom localization via phase and amplitude control of the driving field. Phys. Rev. A 65(4), 043819 (2002)

    Article  ADS  Google Scholar 

  33. S. Qamar, J. Evers, M.S. Zubairy, Atom microscopy via two-photon spontaneous emission spectroscopy. Phys. Rev. A 79(4), 043814 (2009)

    Article  ADS  Google Scholar 

  34. F. Ghafoor, Subwavelength atom localization via quantum coherence in a three-level atomic system. Phys. Rev. A 84(6), 063849 (2011)

    Article  ADS  Google Scholar 

  35. C. Liu, S. Gong, D. Cheng, X. Fan, Z. Xu, Atom localization via interference of dark resonances. Phys. Rev. A 73(2), 025801 (2006)

    Article  ADS  Google Scholar 

  36. S. Qamar, S.Y. Zhu, M.S. Zubairy, Atom localization via resonance fluorescence. Phys. Rev. A 61(6), 063806 (2000)

    Article  ADS  Google Scholar 

  37. H. Nha, J.H. Lee, J.S. Chang, K. An, Atomic-position localization via dual measurement. Phys. Rev. A 65(3), 033827 (2002)

    Article  ADS  Google Scholar 

  38. Z. Wang, T. Shui, B. Yu, Efficient two-dimensional atom localization in a four-level atomic system beyond weak-probe approximation. Opt. Commun. 313, 263 (2014)

    Article  ADS  Google Scholar 

  39. J. Li, R. Yu, M. Liu, C. Ding, X. Yang, Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978 (2011)

    Article  ADS  Google Scholar 

  40. L. Jin, H. Sun, Y. Niu, S. Jin, S. Gong, Two-dimension atom nano-lithograph via atom localization. J. Mod. Opt. 56, 805 (2009)

    Article  ADS  Google Scholar 

  41. S. Rahmatullah, Qamar, Two-dimensional atom localization via Raman-driven coherence. Phys. Lett. A 378, 684 (2014)

  42. V. Ivanov, Y. Rozhdestvensky, Two-dimensional atom localization in a four-level tripod system in laser fields. Phys. Rev. A 81, 033809 (2010)

    Article  ADS  Google Scholar 

  43. X. Jiang, J. Li, X. Sun, Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system. Opt. Exp. 25, 31678 (2017)

    Article  Google Scholar 

  44. R.G. Wan, T.Y. Zhang, Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. Opt. Exp. 19(25), 25823 (2011)

    Article  Google Scholar 

  45. C. Ding, J. Li, Z. Zhan, X. Yang, Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)

    Article  ADS  Google Scholar 

  46. Z. Zhu, W.X. Yang, A.X. Chen, S. Liu, R.K. Lee, Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems. Opt. Soc. Am. B 32(6), 1070 (2015)

    Article  ADS  Google Scholar 

  47. D. H. White, T. A. Haase, D. J. Brown, M. D. Hoogerland, M. S. Najafabadi, J. L. Helm, C. Gies, D. l Schumayer, D. A. W. Hutchinson, Observation of two-dimensional Anderson localisation of ultracold atoms. Nat. Commun. 11, 4942 (2020)

  48. S. Ullah, U. Wahid, B.A. Bacha, A. Ullah, Z. Ullah, Particle microscopy by surface plasmon polariton waves at the interface of dielectric and silver silica nano-composites. Phys. Scr. 96, 015104 (2020)

    Article  ADS  Google Scholar 

  49. M. Idrees, M. Ullah, B.A. Bacha, A. Ullah, L. Wang, High-resolution two-dimensional atomic microscopy in a tripod-type four-level atomic medium via standing wave fields. Laser Phys. 30, 115402 (2020)

    Article  ADS  Google Scholar 

  50. H.M.M. Alotaibi, B.C. Sanders, Phys. Rev. A 89, 021802(R) (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (A. Dahshan) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number (RGP.2/141/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haneef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, A., Haneef, M., Khan, H. et al. Two-dimensional atom localization by absorption spectrum using superposition of two super-Gaussian beams. Eur. Phys. J. Plus 137, 616 (2022). https://doi.org/10.1140/epjp/s13360-022-02836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02836-y

Navigation