Skip to main content
Log in

Characterization and antibacterial functions of Ag–TiO2 and W–TiO2 nanostructured thin films prepared by sol-gel/laser-induced technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W–TiO2, Ag–TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75–85 mJ/cm2 fluence in W–TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag–TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  2. X. Chen, S. Mao, Chem. Rev. 2891 (2007)

  3. T.I.N. Negishi, K. Hashimoto, A. Fujishima, Chem. Lett. 841 (1995)

  4. T.I.Y. Kikushi, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. A 106, 51 (1997)

    Article  Google Scholar 

  5. A. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  Google Scholar 

  6. M. Malati, W. Wong, Surf. Technol., 305 (1984)

  7. X.Z. Li, J. Photochem. Photobiol. A, Chem. 141, 209 (2001)

    Article  Google Scholar 

  8. A. Rampaul, I.P. Parkin, S.A. O’Neill, J. DeSouza, A. Mills, N. Elliott, Polyhedron 22, 35 (2003)

    Article  Google Scholar 

  9. O. Akhavan, E. Ghaderi, Surf. Coat. Technol. 204, 3676 (2010)

    Article  Google Scholar 

  10. X. Pan, I. Medina-Ramirez, R. Mernaugh, J. Liu, Colloids Surf. B, Biointerfaces 77, 82 (2010)

    Article  Google Scholar 

  11. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, Nanotechnology 16, 2346 (2005)

    Article  ADS  Google Scholar 

  12. H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, J. Photochem. Photobiol. A, Chem. 163, 37 (2004)

    Article  Google Scholar 

  13. W.K. Wong, M.A. Malati, Sol. Energy 36, 163 (1986)

    Article  Google Scholar 

  14. M.M. Yusuf, H. Imai, H. Hirashima, J. Non-Cryst. Solids 285, 90 (2001)

    Article  ADS  Google Scholar 

  15. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  16. S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chem. Mater. 15, 3326 (2003)

    Article  Google Scholar 

  17. S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Depos. 6, 239 (2000)

    Article  Google Scholar 

  18. T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, H. Takahashi, Acta Mater. 53, 323 (2005)

    Article  Google Scholar 

  19. F. Bosc, A. Ayral, P.-A. Albouy, C. Guizard, Chem. Mater. 15, 2463 (2003)

    Article  Google Scholar 

  20. D.J. Taylor, B.D. Fabes, J. Non-Cryst. Solids 147/148, 457 (1992)

    Article  ADS  Google Scholar 

  21. M.R.S. Castro, E.D. Sam, M. Veith, P.W. Oliveira, Nanotechnology 19, 105704 (2008)

    Article  ADS  Google Scholar 

  22. T. Tsuchiya, A. Watanabe, H. Niino, I. Yamaguchi, T. Manabe, T. Kumagai, S. Mizuta, Appl. Surf. Sci. 186, 173 (2002)

    Article  ADS  Google Scholar 

  23. D. Bauerle, Laser Processing and Chemistry, 3rd ed. (Springer, Berlin, 2000)

    Google Scholar 

  24. J.C. Ion, Laser Processing of Engineering Materials, Principles, Procedure and Industrial Application, 1st ed. (Elsevier/Butterworth/Heinemann, Oxford, 2005)

    Google Scholar 

  25. Y.F. Joya, Z. Liu, Scr. Mater. 60, 467 (2009)

    Article  Google Scholar 

  26. Y.F. Joya, Z. Liu, J. Optoelectron. Adv. Mater. 12, 589 (2010)

    Google Scholar 

  27. Y.F. Joya, Z. Liu, Appl. Phys. A, Mater. Sci. Process. 102, 91 (2011)

    Article  ADS  Google Scholar 

  28. T. Nakajima, T. Tsuchiya, T. Kumagai, J. Solid State Chem. 182, 2560 (2009)

    Article  ADS  Google Scholar 

  29. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  30. M. Fernández-García, A. Martínez-Arias, A. Fuerte, J.C. Conese, J. Phys. Chem. B 109, 6075 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Joya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joya, Y.F., Liu, Z. & Wang, T. Characterization and antibacterial functions of Ag–TiO2 and W–TiO2 nanostructured thin films prepared by sol-gel/laser-induced technique. Appl. Phys. B 105, 525–536 (2011). https://doi.org/10.1007/s00340-011-4600-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4600-6

Keywords

Navigation