Skip to main content
Log in

Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the accurate and precise measurement of nitric oxide (NO) in automotive exhaust gas by cavity ring-down spectroscopy (CRDS) using a thermoelectrically cooled, pulsed quantum cascade laser (QCL) as a light source. A mid-infrared QCL with a 5.26 μm wavelength was used to detect fundamental vibrational transitions of NO. An effective optical path length of 2.1 km was achieved in a 50 cm long cell using high-reflectivity mirrors. In combination with a particle filter and a membrane gas dryer, stable and sensitive measurement of NO in exhaust gas was achieved for more than 30 minutes with a time resolution of 1 s. The results of this work indicate that a laser based NO sensor can be used to measure NO in exhaust gas over a dynamic range of three orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, Hoboken, 1998)

    Google Scholar 

  2. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  3. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 5522 (2001)

    Article  ADS  Google Scholar 

  4. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 43, 2257 (2004)

    Article  ADS  Google Scholar 

  5. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)

    Article  ADS  Google Scholar 

  6. M.R. Mccurdy, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 85, 445 (2006)

    Article  ADS  Google Scholar 

  7. M.L. Silva, D.M. Sonnenfroh, D.I. Rosen, M.G. Allen, A. O’Keefe, Appl. Phys. B 81, 705 (2005)

    Article  ADS  Google Scholar 

  8. R. Evertsen, A. Staicu, N. Dam, A.V. Vliet, J.J.T. Meulen, Appl. Phys. B 74, 465 (2002)

    Article  ADS  Google Scholar 

  9. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  10. W.H. Weber, J.T. Remillard, R.E. Chase, J.F. Richert, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Appl. Spectrosc. 56, 706 (2002)

    Article  ADS  Google Scholar 

  11. V.L. Kasyutich, R.J. Holdsworth, P.A. Martin, J. Phys. Conf. Ser. 157, 012006 (2009)

    Article  ADS  Google Scholar 

  12. B.W.M. Moeskops, S.M. Cristescu, Opt. Lett. 31, 823 (2006)

    Article  ADS  Google Scholar 

  13. M.T. McCulloch, N. Langford, G. Duxbury, Appl. Opt. 44, 2887 (2005)

    Article  ADS  Google Scholar 

  14. H. Yamada, K. Misawa, M. Fujii, K. Tanaka, D. Suzuki, J. Matsumoto, K. Tanaka, SAE Trans., 2009-01-02742 (2009)

  15. M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem., Sect. C 101, 100 (2005)

    Article  Google Scholar 

  16. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J.V. Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tonokura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumizawa, H., Yamada, H. & Tonokura, K. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B 100, 925–931 (2010). https://doi.org/10.1007/s00340-010-4138-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4138-z

Keywords

Navigation