Skip to main content
Log in

Inertial and gravitational mass in quantum mechanics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulation of the corresponding energy wave function is determined by the third root of the product of the two masses. Moreover, the discrete energy spectrum of a particle constrained in its motion by a linear gravitational potential and an infinitely steep wall depends on the inertial as well as the gravitational mass with different fractional powers. This feature might open a new avenue in quantum tests of the universality of free fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. C.M. Will, Living Rev. Relativ. 4, 4 (2001) URL (cited on 2 March 2010): http://www.livingreviews.org/lrr-2001-4

    MathSciNet  ADS  Google Scholar 

  3. R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975)

    Article  ADS  Google Scholar 

  4. D.M. Greenberger, A.W. Overhauser, Rev. Mod. Phys. 51, 43 (1979)

    Article  ADS  Google Scholar 

  5. U. Bonse, T. Wroblewski, Phys. Rev. Lett. 51, 1401 (1983)

    Article  ADS  Google Scholar 

  6. D.M. Greenberger, Rev. Mod. Phys. 55, 875 (1983)

    Article  ADS  Google Scholar 

  7. H. Rauch, S.A. Werner, Neutron Interferometry (Oxford University Press, New York, 2000)

    Google Scholar 

  8. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  9. M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992)

    Article  ADS  Google Scholar 

  10. A. Peters, K.Y. Chung, S. Chu, Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  11. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  12. S. Fray, C. Alvarez Diez, T.W. Hänsch, M. Weitz, Phys. Rev. Lett. 93, 240404 (2004)

    Article  ADS  Google Scholar 

  13. E. Arimondo, W. Ertmer, W.P. Schleich, E.M. Rasel (eds.), Proceedings of the International School of Physics “Enrico Fermi” Course CLXVIII “Atom Optics and Space Physics” (IOS Press/SIF, Amsterdam/Bologna, 2009)

    Google Scholar 

  14. H. Müller, A. Peters, S. Chu, Nature 463, 926 (2010)

    Article  ADS  Google Scholar 

  15. G. Breit, Phys. Rev. 32, 273 (1928)

    Article  ADS  Google Scholar 

  16. G. Süßmann, Quantenmechanik (Bibliographische Verlagsanstalt, Mannheim, 1967)

    Google Scholar 

  17. M. Köhl, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160404 (2001)

    Article  Google Scholar 

  18. M. Kasevich, D. Weiss, S. Chu, Opt. Lett. 15, 607 (1990)

    Article  ADS  Google Scholar 

  19. C.G. Aminoff, A.M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, C. Cohen-Tannoudji, Phys. Rev. Lett. 71, 3083 (1993)

    Article  ADS  Google Scholar 

  20. Yu.B. Ovchinnikov, I. Manek, R. Grimm, Phys. Rev. Lett. 79, 2225 (1997)

    Article  ADS  Google Scholar 

  21. H. Wallis, J. Dalibard, C. Cohen-Tannoudji, Appl. Phys. B 54, 407 (1992)

    Article  ADS  Google Scholar 

  22. K.J. Hughes, J.H.T. Burke, C.A. Sackett, Phys. Rev. Lett. 102, 150403 (2009)

    Article  ADS  Google Scholar 

  23. F.W. Bessel, Pogg. Ann. 25, 401 (1832)

    Article  Google Scholar 

  24. R. v. Eötvös, D. Pekar, E. Feteke, Ann. Phys. (Leipzig) 68, 11 (1922)

    Google Scholar 

  25. P.G. Roll, R. Krotkov, R.H. Dicke, Ann. Phys. (N. Y.) 26, 442 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. C.M. Will, Phys. World 18, 27 (2005)

    Google Scholar 

  27. Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Harris, G.L. Smith, H.E. Swanson, Phys. Rev. D 50, 3614 (1994); see also: Erratum to Phys. Rev. D 50, 3614 (1994)

    Article  ADS  Google Scholar 

  28. S. Schlamminger, K.Y. Choi, T.A. Wagner, J.H. Gundlach, E.G. Adelberger, Phys. Rev. Lett. 100, 041101 (2008)

    Article  ADS  Google Scholar 

  29. C. Lämmerzahl, Gen. Relativ. Gravit. 28, 1043 (1996)

    Article  MATH  ADS  Google Scholar 

  30. L. Viola, R. Onofrio, Phys. Rev. D 55, 455 (1997)

    Article  ADS  Google Scholar 

  31. J.M. Hogan, D.M.S. Johnson, M.A. Kasevich, in Proceedings of the International School of Physics “Enrico Fermi” Course CLXVIII “Atom Optics and Space Physics”, ed. by E. Arimondo, W. Ertmer, W.P. Schleich, E.M. Rasel (IOS Press/SIF, Amsterdam/Bologna, 2009)

    Google Scholar 

  32. V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baeßler, F.J. Rueß, T. Stöferle, A. Westphal, A.M. Gagarski, G.A. Petrov, A.V. Strelkov, Nature 415, 297 (2002)

    Article  ADS  Google Scholar 

  33. P.C.W. Davies, Class. Quantum Gravity 21, 2761 (2004)

    Article  MATH  ADS  Google Scholar 

  34. A. Peres, Am. J. Phys. 48, 552 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1928); translated in: The Theory of Groups and Quantum Mechanics (Dover, New York, 1931)

    MATH  Google Scholar 

  36. J.P. Dahl, in Energy Storage and Redistribution in Molecules, ed by J. Hinze (Plenum, New York, 1983)

    Google Scholar 

  37. J.P. Dahl, in Semiclassical Descriptions of Atomic and Nuclear Collisions, ed by J. de Boer, J. Bang (Elsevier, Amsterdam, 1986)

    Google Scholar 

  38. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Weinheim, 2001)

    Book  MATH  Google Scholar 

  39. G. Süßmann, Z. Naturforsch. A 52, 49 (1997)

    Google Scholar 

  40. F.J. Narcowich, R.F. O’Connell, Phys. Rev. A 34, 1 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  41. R. Simon, E.C.G. Sudarshan, N. Mukunda, Phys. Rev. A 36, 3868 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Koike, J.J. Silverstone, J. Phys. A 42, 495206 (2009)

    Article  MathSciNet  Google Scholar 

  43. I. Bialynicki-Birula, M.A. Cirone, J.P. Dahl, M. Fedorov, W.P. Schleich, Phys. Rev. Lett. 89, 060404 (2002)

    Article  ADS  Google Scholar 

  44. J.P. Dahl, A. Wolf, W.P. Schleich, Fortschr. Phys. 52, 1118 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55 (National Bureau Standards, Washington, 1964)

    MATH  Google Scholar 

  46. M. Kleber, Phys. Rep. 236, 331 (1994)

    Article  ADS  Google Scholar 

  47. A. Czirjak, R. Kopold, W. Becker, M. Kleber, W.P. Schleich, Opt. Commun. 179, 29 (2000)

    Article  ADS  Google Scholar 

  48. M.V. Berry, Philos. Trans. R. Soc. A 287, 237 (1977)

    Article  MATH  ADS  Google Scholar 

  49. M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)

    Article  ADS  Google Scholar 

  50. D.M. Greenberger, Am. J. Phys. 48, 256 (1980)

    Article  ADS  Google Scholar 

  51. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  52. G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979 (2007)

    Article  ADS  Google Scholar 

  53. G. Della Valle, M. Savoini, M. Ornigotti, P. Laporta, V. Foglietti, M. Finazzi, L. Duò, S. Longhi, Phys. Rev. Lett. 102, 180402 (2009)

    Article  Google Scholar 

  54. G. Schrade, P.J. Bardroff, R.J. Glauber, C. Leichtle, V. Yakovlev, W.P. Schleich, Appl. Phys. B 64, 181 (1997)

    Article  ADS  Google Scholar 

  55. W. Kohn, Phys. Rev. 123, 1242 (1961)

    Article  MATH  ADS  Google Scholar 

  56. J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994)

    Article  ADS  Google Scholar 

  57. I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. A 65, 063606 (2002)

    Article  ADS  Google Scholar 

  58. G. Nandi, R. Walser, E. Kajari, W.P. Schleich, Phys. Rev. A 76, 063617 (2007)

    Article  ADS  Google Scholar 

  59. J.P. Dowling, W.P. Schleich, J.A. Wheeler, Ann. Phys. (Leipzig) 503, 423 (1991)

    Article  ADS  Google Scholar 

  60. D.J.W. Geldart, D. Kiang, Am. J. Phys. 54, 131 (1986)

    Article  ADS  Google Scholar 

  61. Ch.J. Bordé, Phys. Lett. A 140, 10 (1989)

    Article  ADS  Google Scholar 

  62. Ch.J. Bordé, Metrologia 39, 435 (2002)

    Article  ADS  Google Scholar 

  63. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, Ch.J. Bordé, A. Landragin, P. Bouyer, Phys. Rev. Lett. 97, 010402 (2006)

    Article  ADS  Google Scholar 

  64. D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  65. B.M. Garraway, S. Stenholm, Phys. Rev. A 46, 1413 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Schleich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajari, E., Harshman, N.L., Rasel, E.M. et al. Inertial and gravitational mass in quantum mechanics. Appl. Phys. B 100, 43–60 (2010). https://doi.org/10.1007/s00340-010-4085-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4085-8

Keywords

Navigation