Skip to main content
Log in

Near-infrared resonant photoacoustic gas measurement using simultaneous dual-frequency excitation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The simultaneous dual-frequency operation of a resonant photoacoustic gas sensor based on the differential mode excitation photoacoustic (DME-PA) technique is presented. The DME-PA method uses the excitation of two different modes in a resonant photoacoustic cell and the gas concentration is derived from the amplitude ratio of these acoustic modes. With the simultaneous dual-frequency excitation, the amplitude ratio needed by the DME-PA technique is obtained instantaneously, in contrast to the sequential modulation scheme where additional time delays are introduced by changing the modulation frequency. For a given excitation power reaching the photoacoustic cell, and a total acquisition time longer than 7 s, the simultaneous modulation scheme provides an improved measurement uncertainty compared to the sequential scheme. The proposed sensor allows measuring water vapour with a ±150 ppmV uncertainty using current-modulated near-infrared LEDs and a 15 s total acquisition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schmid, Anal. Bioanal. Chem. 384, 1071 (2006)

    Article  Google Scholar 

  2. A. Elia, P.M. Lugarà, C. Di Franco, V. Spagnolo, Sensors 9, 9616 (2009)

    Article  Google Scholar 

  3. A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  4. V.P. Zharov, V.S. Letokhov, Laser Optoacoustic Spectroscopy. Springer Ser. Opt. Sci., vol. 37 (Springer, Berlin, 1986)

    Google Scholar 

  5. P. Hess, Top. Curr. Chem. 111, 1 (1983)

    Google Scholar 

  6. R. Gerlach, N.H. Amer, Appl. Phys. 23, 319 (1980)

    Article  ADS  Google Scholar 

  7. A. Karbach, P. Hess, J. Chem. Phys. 84, 2945 (1986)

    Article  ADS  Google Scholar 

  8. C. Hornberger, M. König, S.B. Rai, W. Demtröder, Chem. Phys. 190, 171 (1995)

    Article  Google Scholar 

  9. F.G.C. Bijnen, F.J.M. Harren, J. Reuss, Rev. Sci. Instrum. 67, 2914 (1996)

    Article  ADS  Google Scholar 

  10. M. Mattiello, M. Nikles, S. Schilt, L. Thevenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Wener, J. Koeth, Spectrochim. Acta A 63, 952 (2006)

    Article  Google Scholar 

  11. K.P. Koch, W. Lahmann, Appl. Phys. Lett. 32, 289 (1978)

    Article  ADS  Google Scholar 

  12. M. Nägele, M. W Sigrist, Appl. Phys. B 70, 895 (2000)

    ADS  Google Scholar 

  13. F.J.M. Harren, F.G.C. Bijnen, J. Reuss, L.A.C.J. Voesenek, C.W.P.M. Blom, Appl. Phys. B 50, 137 (1990)

    Article  ADS  Google Scholar 

  14. F.J.M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, D.H. Parker, Appl. Phys. Lett. 74, 1761 (1999)

    Article  ADS  Google Scholar 

  15. J.P. Besson, S. Schilt, E. Rochat, L. Thévenaz, Spectrochim. Acta A 63, 899 (2006)

    Article  Google Scholar 

  16. A. Miklos, A. Lorincz, Appl. Phys. B 48, 213 (1989)

    Article  ADS  Google Scholar 

  17. V. Zeninari, V.A. Kapitanov, D. Courtois, Y.N. Ponomarev, Infrared Phys. Technol. 40, 1 (1999)

    Article  ADS  Google Scholar 

  18. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozoy, Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  19. J.M. Rey, M.W. Sigrist, Rev. Sci. Instrum. 78, 063104 (2007)

    Article  ADS  Google Scholar 

  20. J.M. Rey, M.W. Sigrist, Infrared Phys. Technol. 51, 516 (2008)

    Article  ADS  Google Scholar 

  21. J.M. Rey, M.W. Sigrist, Sens. Actuators B, Chem. 135, 161 (2008)

    Article  Google Scholar 

  22. D.W. Allan, Proc. IEEE 54, 221 (1966)

    Article  Google Scholar 

  23. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

  24. J.M. Rey, D. Marinov, D.E. Vogler, M.W. Sigrist, Appl. Phys. B 80, 261 (2005)

    Article  ADS  Google Scholar 

  25. L. Joly, V. Zeninari, B. Parvitte, D. Courtois, G. Durry, Opt. Lett. 31, 143 (2006)

    Article  ADS  Google Scholar 

  26. A. Beenen, R. Niessner, Analyst 123, 543 (1998)

    Article  ADS  Google Scholar 

  27. Z. Bozoki, M. Szakall, A. Mohacsi, G. Szabo, Z. Bora, Sens. Actuators B, Chem. 91, 219 (2003)

    Article  Google Scholar 

  28. N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remenny, N.M. Stus, G.N. Talalakin, V.V. Shustov, Semiconductors 35, 357 (2001)

    Article  ADS  Google Scholar 

  29. I.T. Sorokina, K.L. Vodopyanov (eds.), Solid-State Mid-Infrared Laser Sources. Topics in Appl. Phys., vol. 89 (Springer, Berlin, 2003)

    Google Scholar 

  30. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Browne, M.R. Carleer, C. Chackerian, Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Rad. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Sigrist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, J.M., Romer, C., Gianella, M. et al. Near-infrared resonant photoacoustic gas measurement using simultaneous dual-frequency excitation. Appl. Phys. B 100, 189–194 (2010). https://doi.org/10.1007/s00340-010-3994-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3994-x

Keywords

Navigation