Skip to main content
Log in

Fourier-Transform Infrared Differential Photoacoustic Spectroscopy (FTIR-DPAS) for Simultaneous Monitoring of Multiple Air Contaminants/Trace Gases

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Air pollutants have severe impact on the global environment and the health of human beings. There is an urgent need for cost-effective devices for trace gas monitoring in ambient conditions. However, water vapor in ambient air is still an obstacle in the trace gas absorption detection field due to its complex and strong infrared absorbing characteristics. In this work, a step-scan Fourier-transform infrared differential photoacoustic spectroscopy (FTIR-DPAS) methodology developed in our laboratory through the introduction of two identical T-resonators for enhancing and resolving the DPA signal from two potentially pollutant gases is extended to multiple ambient gas components: carbon dioxide (CO2) and acetylene (C2H2). A key feature of this technique is the ability to resolve hidden target spectral components in ambient air: Despite the fact that the acetylene absorption peaks lie within the strong water vapor absorption band, the infrared PA absorption spectra of acetylene and carbon dioxide are detected with high sensitivity and selectivity in the presence of significant interference of water vapor in the laboratory ambient air, thereby confirming the superiority and capability of step-scan FTIR-DPAS configuration to effectively and totally suppress often dominant background water signals and simultaneously detect multiple trace gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.W. Sigrist, R. Bartlome, D. Maronov, J.M. Rey, D.E. Vogler, H. Wachter, Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B 90, 289 (2008)

    Article  ADS  Google Scholar 

  2. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, C. Hüglin, Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental application. Spectrochim. Acta Part A 60, 3259 (2004)

    Article  ADS  Google Scholar 

  3. D. Marinov, M. Sigrist, Monitoring of road-traffic emissions with a mobile photoacoustic system. Photochem. Photobiol. Sci. 2, 774 (2003)

    Article  Google Scholar 

  4. L. Liu, A. Mandelis, A. Melnikov, K.H. Michaelian, H. Huan, C. Haisch, Step-scan T-cell Fourier transform infrared photoacoustic spectroscopy (FITR-PAS) for monitoring environmental air pollutants. Int. J. Thermophys. 37, 64 (2016)

    Article  ADS  Google Scholar 

  5. M. Lassen, L. Lamard, Y. Feng, A. Peremans, J.C. Petersen, Off-axis QEPAS using a pulsed nanosecond mid-infrared optical parametric oscillator. Opt. Lett. 41, 4118 (2016)

    Article  ADS  Google Scholar 

  6. L. Liu, A. Mandelis, H. Huan, K.H. Michaelian, Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions. Opt. Lett. 42, 1424 (2017)

    Article  ADS  Google Scholar 

  7. L. Liu, A. Mandelis, H. Huan, K.H. Michaelian, A. Melnikov, Step scan T-cell Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) for detection of ambient air contaminants. Vib. Spectrosc. 87, 94 (2016)

    Article  Google Scholar 

  8. L. Liu, A. Mandelis, H. Huan, A. Melnikov, Step scan T-cell based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants. Appl. Phys. B 122, 268 (2016)

    Article  ADS  Google Scholar 

  9. J. Mayrwoger, W. Reichl, C. Krutzler, B. Jakoby, Measuring CO2 concentration with a Fabry–Perot based bolometer using a glass plate as simple infrared filter. Sens. Actuators B 170, 143 (2012)

    Article  Google Scholar 

  10. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The Hitran 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Grant to AM, and the Canada Research Chairs Program. AM gratefully acknowledges the Chinese Recruitment Program of Global Experts (Thousand Talents). LL and HH gratefully acknowledge the China Scholarship Council (CSC) Program and the National Natural Science Foundation of China (No. 51706036). The authors acknowledge Profs. Yafei Wang and Chunming Gao for their suggestions and advice during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mandelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Mandelis, A. & Huan, H. Fourier-Transform Infrared Differential Photoacoustic Spectroscopy (FTIR-DPAS) for Simultaneous Monitoring of Multiple Air Contaminants/Trace Gases. Int J Thermophys 39, 94 (2018). https://doi.org/10.1007/s10765-018-2411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2411-2

Keywords

Navigation