Skip to main content

High harmonic generation in a gas-filled hollow-core photonic crystal fiber

Abstract

High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).

References

  1. M. Ferray, A. L’Huillier, X.F. Li, L.A. Lompré, G. Mainfray, C. Manus, Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988)

    Article  ADS  Google Scholar 

  2. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  3. U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  4. T. Südmeyer, S.V. Marchese, S. Hashimoto, C.R.E. Baer, G. Gingras, B. Witzel, U. Keller, Femtosecond laser oscillators for high-field science. Nat. Photonics 2, 599 (2008)

    Article  Google Scholar 

  5. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, 131 W 220 fs fiber laser system. Opt. Lett. 30, 2754 (2005)

    Article  ADS  Google Scholar 

  6. T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, A. Tunnermann, A 325-W-average-power fiber CPA system delivering sub-400 fs pulses. IEEE J. Sel. Top. Quantum Electron. 15, 187 (2009)

    Article  Google Scholar 

  7. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005)

    Article  ADS  Google Scholar 

  8. R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)

    Article  ADS  Google Scholar 

  9. S. Kim, J.H. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757 (2008)

    Article  ADS  Google Scholar 

  10. A. Paul, R.A. Bartels, R. Tobey, H. Green, S. Weiman, I.P. Christov, M.M. Murnane, H.C. Kapteyn, S. Backus, Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature 421, 51 (2003)

    Article  ADS  Google Scholar 

  11. H. Ren, A. Nazarkin, J. Nold, P.S.J. Russell, Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers. Opt. Express 16, 17052 (2008)

    Article  ADS  Google Scholar 

  12. E.E. Serebryannikov, D. von der Linde, A.M. Zheltikov, Phase-matching solutions for high-order harmonic generation in hollow-core photonic-crystal fibers. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70, 66611 (2004)

    Google Scholar 

  13. E.E. Serebryannikov, D. von der Linde, A.M. Zheltikov, Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber. Opt. Lett. 33, 977 (2008)

    Article  ADS  Google Scholar 

  14. X. Zhang, A.L. Lytle, T. Popmintchev, X. Zhou, H.C. Kapteyn, M.M. Murnane, O. Cohen, Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nat. Phys. 3, 270 (2007)

    Article  Google Scholar 

  15. F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399 (2002)

    Article  ADS  Google Scholar 

  16. F. Couny, F. Benabid, P.J. Roberts, P.S. Light, M.G. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118 (2007)

    Article  ADS  Google Scholar 

  17. C.J. Hensley, M.A. Foster, B. Shim, A.L. Gaeta, Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber, in Conference on Lasers and Electro-Optics (CLEO) (IEEE Press, New York, 2008), p. paper JFG1

    Google Scholar 

  18. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24, 4729 (2006)

    Article  ADS  Google Scholar 

  19. I. Christov, H. Kapteyn, M. Murnane, Quasi-phase matching of high-harmonics and attosecond pulses in modulated waveguides. Opt. Express 7, 362 (2000)

    Article  ADS  Google Scholar 

  20. D.M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B.C. Walker, M.M. Murnane, H.C. Kapteyn, J.J. Rocca, High-order harmonic generation from ions in a capillary discharge. Phys. Rev. Lett. 96, 4 (2006)

    Article  Google Scholar 

  21. E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, H.C. Kapteyn, Coherent soft X-ray generation in the water window with quasi-phase matching. Science 302, 95 (2003)

    Article  ADS  Google Scholar 

  22. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, B. Mangan, Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477 (2004)

    Article  ADS  Google Scholar 

  23. J. West, C. Smith, N. Borrelli, D. Allan, K. Koch, Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485 (2004)

    Article  ADS  Google Scholar 

  24. F. Schäfers, The BESSY raytrace program RAY, in Modern Developments in X-Ray and Neutron Optics (Springer, Berlin/Heidelberg, 2008), pp. 9–41

    Chapter  Google Scholar 

  25. A. L’Huillier, P. Balcou, L.A. Lompre, Coherence and resonance effects in high-order harmonic-generation. Phys. Rev. Lett. 68, 166 (1992)

    Article  ADS  Google Scholar 

  26. D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099 (2008)

    Article  ADS  Google Scholar 

  27. J. Seres, V.S. Yakovlev, E. Seres, C. Streli, P. Wobrauschek, C. Spielmann, F. Krausz, Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nat. Phys. 3, 878 (2007)

    Article  Google Scholar 

  28. T.E. Dimmick, G. Kakarantzas, T.A. Birks, P.S.J. Russell, Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 38, 6845 (1999)

    Article  ADS  Google Scholar 

  29. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D.H. Sutter, T. Dekorsy, Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 16, 20530 (2008)

    Article  ADS  Google Scholar 

  30. F. Brunner, E. Innerhofer, S.V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, U. Keller, Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. Opt. Lett. 29, 1921 (2004)

    Article  ADS  Google Scholar 

  31. W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Soft-X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210 (2005)

    Article  ADS  Google Scholar 

  32. J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 96, 017005 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. H. Heckl.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Heckl, O.H., Baer, C.R.E., Kränkel, C. et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 97, 369 (2009). https://doi.org/10.1007/s00340-009-3771-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-009-3771-x

PACS

  • 42.81.Qb
  • 42.65.Ky
  • 42.55.Xi