Skip to main content
Log in

A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (28 mm inner diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, Γ 01, and transverse, Γ 02, relaxation rates. Our best cell shows Γ 01/2π≈0.5 Hz, and Γ 02/2π≈2 Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9 to 30 fT \(\sqrt{\mathrm{Hz}}\) . Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys. 74, 1153 (2002)

    Article  ADS  Google Scholar 

  2. H.G. Robinson, E.S. Ensberg, H.G. Dehmelt, Bull. Am. Phys. Soc. 3 (1958)

  3. G. Di Domenico, H. Saudan, G. Bison, P. Knowles, A. Weis, Phys. Rev. A 76, 023407 (2007). http://link.aps.org/abstract/PRA/v76/e023407

    Article  ADS  Google Scholar 

  4. A. Weis, R. Wynands, Opt. Las. Engineer. 43, 387 (2005)

    Article  Google Scholar 

  5. D. Budker, M. Romalis, Nat. Phys. 3, 227 (2007). doi:10.1038/nphys566

    Article  Google Scholar 

  6. M. Klein, I. Novikova, D.F. Phillips, R.L. Walsworth, J. Mod. Opt. 53, 2583 (2006)

    Article  ADS  Google Scholar 

  7. T. Fernholz, H. Krauter, K. Jensen, J.F. Sherson, A.S. Sorensen, E.S. Polzik, Phys. Rev. Lett. 101, 073601 (2008). http://link.aps.org/abstract/PRL/v101/e073601

    Article  ADS  Google Scholar 

  8. E.B. Alexandrov, M.V. Balabas, D. Budker, D. English, D.F. Kimball, C.-H. Li, V.V. Yashchuk, Phys. Rev. A 66, 042903 (2002). http://prola.aps.org/abstract/PRA/v66/i4/e042903

    Article  ADS  Google Scholar 

  9. S. Gozzini, A. Lucchesini, L. Marmugi, G. Postorino, Eur. Phys. J. D 47, 1 (2008), doi:10.1140/epjd/e2008-00015-5

    Article  ADS  Google Scholar 

  10. G. Bison, R. Wynands, A. Weis, J. Opt. Soc. Am. B. 22, 77 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Bison, R. Wynands, A. Weis, Appl. Phys. B 76, 325 (2003)

    Article  ADS  Google Scholar 

  12. A. Weis, G. Bison, A.S. Pazgalev, Phys. Rev. A 74, 033401 (2006). http://link.aps.org/abstract/PRA/v74/e033401

    Article  ADS  Google Scholar 

  13. A. Hofer, G. Bison, N. Castagna, P. Knowles, J.L. Schenker, A. Weis (2008 in preparation)

  14. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, A. Weis, Eur. Phys. J. D 38, 239 (2006)

    Article  ADS  Google Scholar 

  15. G. Ban, K. Bodek, M. Daum, R. Henneck, S. Heule, M. Kasprzak, N. Khomytov, K. Kirch, A. Knecht, S. Kistryn Hyperfine Interactions 172, 41 (2006)

    Article  ADS  Google Scholar 

  16. A. Andalkar, R.B. Warrington, Phys. Rev. A 65, 032708 (2002)

    Article  ADS  Google Scholar 

  17. J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol, 1989)

    Book  Google Scholar 

  18. D. Budker, L. Hollberg, D.F. Kimball, J. Kitching, S. Pustelny, V.V. Yashchuk, Phys. Rev. A 71, 012903 (2005). http://link.aps.org/abstract/PRA/v71/e012903

    Article  ADS  Google Scholar 

  19. E.B. Aleksandrov, M.V. Balabas, A.K. Vershovskii, A.E. Ivanov, N.N. Yakobson, V.L. Velichanskii, N.V. Senkov, Opt. Spectrosc. 78, 325 (1995)

    Google Scholar 

  20. K.L. Corwin, Z.T. Lu, C.F. Hand, R.J. Epstain, C.E. Wieman, Appl. Opt. 37, 3295 (1998)

    Article  ADS  Google Scholar 

  21. G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A.S. Pazgalev, M. Rebetez, H. Saudan, A. Weis, Phys. Rev. A 74, 063415 (2006). http://link.aps.org/abstract/PRA/v74/e063415

    Article  ADS  Google Scholar 

  22. Wolfram Research, Inc., Mathematica, V5.2 (Wolfram Research, Inc., Champaign, 2008)

    Google Scholar 

  23. S.F. Watanabe H.G. Robinson, J. Phys. B, At. Mol. Opt. Phys. 10, 931 (1977)

    Article  ADS  Google Scholar 

  24. N.W. Ressler, R.H. Sands, T.E. Stark, Phys. Rev. 184, 102 (1969)

    Article  ADS  Google Scholar 

  25. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Phys. Rev. A 47, 3554 (1993)

    Article  ADS  Google Scholar 

  26. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, Nature 422, 596 (2003)

    Article  ADS  Google Scholar 

  27. W. Andrä H. Nowak, Magnetism in Medicine (Wiley-VCH, New York, 2007)

    Google Scholar 

  28. A. Weis et al. (2009, article in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Castagna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagna, N., Bison, G., Di Domenico, G. et al. A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells. Appl. Phys. B 96, 763–772 (2009). https://doi.org/10.1007/s00340-009-3464-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3464-5

PACS

Navigation