Skip to main content
Log in

Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

With the help of the generalized Huygens–Fresnel integral and the ABCD matrix approach a bistatic LIDAR system involving a rough target at a distant location in a turbulent atmosphere is modeled. The system operates by means of an optical beam which has arbitrary spectral composition, and states of coherence and polarization. The rough target is modeled as a combination of a Gaussian mirror and a thin phase screen which induces phase perturbations of the components of the electric field. The analytical form of the cross-spectral density matrix of the returned beam is determined, from which the effect of the rough target on the spectral density (intensity) and polarization of the returned wave is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. Andrews, R.L. Phillips, Laser Beam Propagation in Random Media, 2nd edn. (SPIE, Bellingham, 2005)

    Google Scholar 

  2. V.A. Banakh, L.V. Mironov, LIDAR in a Turbulent Atmosphere (Artech House, Dedham, 1987)

    Google Scholar 

  3. O. Korotkova, L.C. Andrews, Proc. SPIE 4723 (2002)

  4. O. Korotkova, L.C. Andrews, R.L. Phillips, Proc. SPIE 5086 (2003)

  5. O. Korotkova, L.C. Andrews, R.L. Phillips, Proc. SPIE 5237 (2003)

  6. L.C. Andrews, R.L. Phillips, C.Y. Hopen, Laser Beam Scintillation with Applications (SPIE, Washington, 2001)

    Google Scholar 

  7. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  8. H.T. Yura, S.G. Hanson, J. Opt. Soc. Am. A 4, 1931 (1987)

    Article  ADS  Google Scholar 

  9. H.T. Yura, S.G. Hanson, J. Opt. Soc. Am. A 4, 564 (1989)

    Article  ADS  Google Scholar 

  10. L.C. Andrews, W.B. Miller, J. Opt. Soc. Am. A 12, 137 (1995) Erratum: J. Opt. Soc. Am. A 12, 2213 (1995)

    Article  ADS  Google Scholar 

  11. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, R. Simon, J. Opt. A: Pure Appl. Opt. 3, 1 (2001)

    Article  ADS  Google Scholar 

  12. Y. Cai, O. Korotkova, H.T. Eyyuboğlu, Y. Baykal, Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere. Opt. Express 16, 15834 (2008)

    Article  Google Scholar 

  13. J.W. Goodman, Statistical properties of laser speckle patterns, in Laser Speckle and Related Phenomena, ed. by J.C. Dainty (Springer, Berlin, 1975), Chap. 2

    Google Scholar 

  14. M. Salem, O. Korotkova, A. Dogariu, E. Wolf, Waves Random Media 14, 513 (2004)

    Article  MATH  ADS  Google Scholar 

  15. Q. Lin, Y. Cai, Opt. Lett. 27, 216 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Korotkova.

Additional information

E. Watson’s work performed while assigned to the Ladar and Optical Communications Institute, University of Dayton, Dayton, OH 45469, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkova, O., Cai, Y. & Watson, E. Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere. Appl. Phys. B 94, 681–690 (2009). https://doi.org/10.1007/s00340-009-3404-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3404-4

PACS

Navigation