Skip to main content
Log in

Tailor-made metal nanoparticles as SERS substrates

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this contribution we summarize recent experiments with the objective to generate optimized substrates for surface-enhanced Raman spectroscopy (SERS). For this purpose, the well-established laser-assisted growth technique has been applied, which relies on a precise control of the growth kinetics of supported metal nanoparticles. With this method reproducible and stable SERS substrates with tailor-made optical properties possing best field enhancements were produced for specific excitation wavelengths and detection ranges. Optimization of the SERS substrates has been achieved by stabilizing the localized surface plasmon polariton resonance (SPR) of gold nanoparticles in the vicinity of the laser wavelength of λ=647 nm and λ=785 nm used for SERS excitation. After nanoparticle preparation, SERS spectra of pyrene were obtained using naturally grown nanoparticles and nanoparticles prepared by laser-assisted growth.

The most important result is that the optimized substrates prepared by laser-assisted growth exhibit a significantly higher signal-to-noise ratio as compared to naturally grown nanoparticles. They are even better than substrates whose SPR has been tuned to the excitation wavelength by an elevated temperature during preparation. Another important observation is that all SERS spectra exhibit excellent reproducibility and the substrates do not show degradation during the measurements. Finally, the SERS enhancement factors due to the optimized substrates have been estimated and are on the order of 105 to 106.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nie, S.R. Emroy, Science 275, 1102 (1997)

    Article  Google Scholar 

  2. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  3. T. Murphy, H. Schmidt, H.-D. Kronfeldt, Appl. Phys. B 69, 147 (1999)

    Article  ADS  Google Scholar 

  4. T. Murphy, S. Lucht, H. Schmidt, H.-D. Kronfeldt, J. Raman Spectrosc. 31, 943 (2000)

    Article  ADS  Google Scholar 

  5. S. Lucht, T. Murphy, H. Schmidt, H.-D. Kronfeldt, J. Raman Spectrosc. 31, 1017 (2000)

    Article  ADS  Google Scholar 

  6. A. Kudelski, B. Pettinger, Chem. Phys. Lett. 383, 76 (2004)

    Article  ADS  Google Scholar 

  7. A. Otto, J. Raman Spectrosc. 33, 593 (2002)

    Article  ADS  Google Scholar 

  8. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 2, 163 (1974)

    Article  ADS  Google Scholar 

  9. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  10. J. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, I. Gryczynski, Biochem. Biophys. Res. Commun. 286, 875 (2001)

    Article  Google Scholar 

  11. J. Lakowicz, B. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, Anal. Biochem. 301, 261 (2002)

    Article  Google Scholar 

  12. M. Alschinger, M. Maniak, F. Stietz, T. Vartanyan, F. Träger, Appl. Phys. B 76, 771 (2003)

    ADS  Google Scholar 

  13. M. Moskovits, L.-L. Tay, J. Yang, T. Haslett, SERS and the single molecule, in Topics of Applied Physics, ed. by V.M. Shalaev. Optical Properties of Nanostructured Random Media, vol. 82 (Springer, Berlin, 2002)

    Google Scholar 

  14. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys., Condens. Matter. 14, R597 (2002)

    Article  ADS  Google Scholar 

  15. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957 (1999)

    Article  Google Scholar 

  16. K. Li, X. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. B 71, 115409 (2005)

    Article  ADS  Google Scholar 

  17. Z.J. Wang, S.L. Pan, T.D. Krauss, H. Du, L.J. Rothberg, Proc. Natl. Acad. Sci. USA 100, 8638 (2003)

    Article  ADS  Google Scholar 

  18. N. Felidj, S.L. Truong, J. Aubard, G. Levi, J.R. Krenn, A. Hohenau, A. Leitner, F.R. Aussenegg, J. Chem. Phys. 120, 7141 (2004)

    Article  ADS  Google Scholar 

  19. C.L. Haynes, A.D. McFarland, M.T. Smith, J.C. Hulteen, R.P. Van Duyne, J. Chem. Phys. B 106, 1898 (2002)

    Article  Google Scholar 

  20. A. Otto, Light scattering in solids IV, in Electronic Scattering, Spin Effects, SERS and Morphic Effects, ed. by M. Cardona, G. Guntherodt (Springer, Berlin, 1984)

    Google Scholar 

  21. H. Ouacha, C. Hendrich, F. Hubenthal, F. Träger, Appl. Phys. B 81, 663 (2005)

    Article  ADS  Google Scholar 

  22. F. Hubenthal, C. Hendrich, H. Ouacha, D. Blázquez Sánchez, F. Träger, Int. J. Mod. Phys. B 19, 2604 (2005)

    Article  ADS  Google Scholar 

  23. D. Blázquez Sánchez, F. Hubenthal, F. Träger, J. Phys., Conf. Ser. 59, 240 (2007)

    Article  ADS  Google Scholar 

  24. R. Morarescu, D. Blázquez Sánchez, N. Borg, T. Vartanyan, F. Hubenthal, F. Träger, Appl. Surf. Sci. (2009, accepted)

  25. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger, Appl. Phys. B 69, 513 (1999)

    Article  ADS  Google Scholar 

  26. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1925)

    Google Scholar 

  27. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger, Phys. Rev. Lett. 84, 5644 (2000)

    Article  ADS  Google Scholar 

  28. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Träger, Appl. Phys. Lett. 74, 2605 (1999)

    Article  ADS  Google Scholar 

  29. T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, F. Träger, Chem. Phys. Lett. 386, 319 (2004)

    Article  ADS  Google Scholar 

  30. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, F. Träger, Appl. Phys. B 76, 869 (2003)

    Article  ADS  Google Scholar 

  31. F. Hubenthal, T. Ziegler, C. Hendrich, T. Vartanyan, F. Träger, Proc. SPIE 5221, 29 (2003)

    Article  ADS  Google Scholar 

  32. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  33. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Orlando, 1985)

    Google Scholar 

  34. T. Yamaguchi, S. Yoshida, A. Kinbara, Thin Solid Films 21, 173 (1974)

    Article  ADS  Google Scholar 

  35. F. Hubenthal, M. Alschinger, M. Bauer, D. Blázquez Sánchez, N. Borg, M. Brezeanu, R. Frese, C. Hendrich, B. Krohn, M. Aeschlimann, F. Träger, Proc. SPIE 5838, 224 (2005)

    Article  ADS  Google Scholar 

  36. C. Hendrich, PhD Thesis, Universität Kassel (2004)

  37. V. Resta, J. Siegel, J. Bonse, J. Gonzalo, C.N. Afonso, E. Piscopiello, G. Van Tenedeloo, J. Appl. Phys. 100, 084311 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hubenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubenthal, F., Blázquez Sánchez, D., Borg, N. et al. Tailor-made metal nanoparticles as SERS substrates. Appl. Phys. B 95, 351–359 (2009). https://doi.org/10.1007/s00340-009-3373-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3373-7

PACS

Navigation