Skip to main content
Log in

Plasmon hybridization in nanorod dimers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Using the plasmon hybridization method we investigate the plasmon modes of nanorod dimers in axial and parallel orientations. We show that the plasmon modes of the system can be viewed as bonding and anti-bonding modes resulting from the hybridization of the plasmon modes of the individual nanorods. The dimer plasmon modes are found to depend sensitively on separation between the nanorods and on their relative spatial orientation. The calculated optical properties agree quantitatively with results from the numerical finite-difference time-domain method. The electric field enhancements are found to depend strongly on aspect ratio defined as the ratio of the major and minor radii, and on the relative orientation of the nanorods. For a nanorod dimer of fixed overall length, the maximum field enhancements are lower than those induced in a solid sphere dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, C.S. Levin, N.J. Halas, J. Am. Chem. Soc. 127, 14992 (2005)

    Article  Google Scholar 

  2. C. Langhammer, I. Zoric, B. Kasemo, B.M. Clemens, Nano Lett. 7, 3122 (2007)

    Article  Google Scholar 

  3. R. Kumar, H. Zhou, S.B. Cronin, Appl. Phys. Lett. 91, 223105 (2007)

    Article  ADS  Google Scholar 

  4. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 7, 496 (2007)

    Article  Google Scholar 

  5. J. Zhang, Y. Fu, M.H. Chowdury, J.R. Lakowicz, J. Phys. Chem. C 111, 11784 (2007)

    Article  Google Scholar 

  6. D. Neuhauser, K. Lopata, J. Chem. Phys. 127, 154715 (2007)

    Article  ADS  Google Scholar 

  7. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  8. K.-Y. Jung, F.L. Texeira, R.M. Reano, J. Light. Technol. 25, 2757 (2007)

    Article  ADS  Google Scholar 

  9. A. Hosseini, H. Nejati, Y. Massoud, Opt. Express 15, 15280 (2007)

    Article  ADS  Google Scholar 

  10. V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  11. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Nature Mater. 7, 31 (2008)

    Article  ADS  Google Scholar 

  12. C. Loo, L. Hirsch, M.H. Lee, E. Chang, J. West, N.J. Halas, R. Drezek, Opt. Lett. 30, 1012 (2005)

    Article  ADS  Google Scholar 

  13. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Nanomedicine 2, 681 (2007)

    Article  Google Scholar 

  14. M. Moskovits, D.H. Jeong, Chem. Phys. Lett. 397, 91 (2004)

    Article  ADS  Google Scholar 

  15. F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, ACS Nano 2, 707 (2008)

    Article  Google Scholar 

  16. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  17. N.J. Halas, MRS Bull. 30, 362 (2005)

    Google Scholar 

  18. F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, F. Trager, Eur. Phys. J. D 34, 165 (2005)

    Article  ADS  Google Scholar 

  19. S.M. Wang, J.J. Xiao, K.W. Yu, Opt. Commun. 279, 384 (2007)

    Article  ADS  Google Scholar 

  20. F. Tam, C. Moran, N.J. Halas, J. Phys. Chem. B 108, 17290 (2004)

    Article  Google Scholar 

  21. J. Zhu, Appl. Phys. A 88, 673 (2007)

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, J. Phys. Chem. C 112, 18 (2008)

    Article  Google Scholar 

  23. G. Pellegrini, G. Mattei, V. Bello, P. Mazzoldi, Mater. Sci. Eng. C 27, 1347 (2007)

    Article  Google Scholar 

  24. L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N. Halas, J.L. West, Ann. Biomed. Eng. 34, 15 (2006)

    Article  Google Scholar 

  25. P.K. Jain, M.A. El-Sayed, Nano Lett. 7, 2854 (2007)

    Article  Google Scholar 

  26. C.J. Murphy, T.K. San, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  Google Scholar 

  27. P.R. Evans, G.A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickinson, R.J. Pollard, A.V. Zayats, J. Phys. Chem. C 111, 12522 (2007)

    Article  Google Scholar 

  28. B.N. Khlebtsov, N.G. Khlebtsov, J. Phys. Chem. C 111, 11516 (2007)

    Article  Google Scholar 

  29. S. Link, M.B. Mohamed, M.A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999)

    Article  Google Scholar 

  30. F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Nano Lett. 7, 729 (2007)

    Article  Google Scholar 

  31. M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87, 167401 (2001)

    Article  ADS  Google Scholar 

  32. D.P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V.M. Shalaev, J.S. Suh, R. Botet, Phys. Rev. Lett. 72, 4149 (1994)

    Article  ADS  Google Scholar 

  33. H.X. Xu, J. Aizpurua, M. Kall, P. Apell, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  34. C. Oubre, P. Nordlander, J. Phys. Chem. B 109, 10042 (2005)

    Article  Google Scholar 

  35. Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, J. Phys. Chem. B 101, 6661 (1997)

    Article  Google Scholar 

  36. E.A. Coronado, G.C. Schatz, J. Chem. Phys. 119, 3926 (2003)

    Article  ADS  Google Scholar 

  37. J. Perez-Juste, I. Pastoria-Santos, L.M. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005)

    Article  Google Scholar 

  38. A. Brioude, X.C. Jiang, M.P. Pileni, J. Phys. Chem. B 109, 13138 (2005)

    Article  Google Scholar 

  39. J. Aizpurua, G.W. Bryant, L.J. Richter, F.J.G. de Abajo, Phys. Rev. B 71, 235420 (2005)

    Article  ADS  Google Scholar 

  40. P.K. Jain, S. Eustis, M.A. El-Sayed, J. Phys. Chem. B 110, 18243 (2006)

    Article  Google Scholar 

  41. E. Prodan, P. Nordlander, J. Chem. Phys. 120, 5444 (2004)

    Article  ADS  Google Scholar 

  42. D.W. Brandl, C. Oubre, P. Nordlander, J. Chem. Phys. 123, 024701 (2005)

    Article  ADS  Google Scholar 

  43. H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas, Acc. Chem. Res. 40, 53 (2007)

    Article  Google Scholar 

  44. D.W. Brandl, P. Nordlander, J. Chem. Phys. 126, 144708 (2007)

    Article  ADS  Google Scholar 

  45. Y.P. Wu, P. Nordlander, J. Chem. Phys. 125, 124708 (2006)

    Article  ADS  Google Scholar 

  46. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nordlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willingham, B., Brandl, D.W. & Nordlander, P. Plasmon hybridization in nanorod dimers. Appl. Phys. B 93, 209–216 (2008). https://doi.org/10.1007/s00340-008-3157-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3157-5

PACS

Navigation