Skip to main content
Log in

Quenching of electroluminescence and charge trapping in high-efficiency Ge-implanted MOS light-emitting silicon diodes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Combined measurements of charge trapping and electroluminescence intensity as a function of injected charge and current have been carried out with the aim of clarifying the mechanisms of electroluminescence (EL) quenching in Ge-implanted ITO-SiO2-Si light-emitting silicon diodes. Good correlation between the negative charge capture in traps of small effective capture cross-sections (σt1 e=1.7×10-19 cm2 and σt2 e=4.8×10-20 cm2) located in SiO2, and the quenching of the asymmetrical EL line with a maximum intensity at 400 nm has been observed. Similar correlation between the electron capture in traps with extremely small effective capture cross-section (σt3 e=5×10-21 cm2) and the quenching of the EL line at 637 nm has been established. A quantitative model for the EL quenching has been developed, which takes into account the modification of the luminescent centers with subsequent electron capture at the newly generated traps. The model shows good agreement between simulation and experimental data. It also demonstrates that small effective capture cross-sections for electron charging during the EL quenching are determined by the probability of the luminescence centers (LCs) being disrupted, and enables one to estimate the Ge concentration associated with the EL at 400 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Y. Zhang, X.L. Wu, X.M. Bao, Appl. Phys. Lett. 71, 2505 (1997)

    Article  ADS  Google Scholar 

  2. L. Rebohle, J. von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Fröb, K. Leo, Appl. Phys. Lett. 71, 2809 (1997)

    Article  ADS  Google Scholar 

  3. L. Rebohle, J. von Borany, H. Fröb, W. Skorupa, Appl. Phys. B 71, 13 (2000)

    Article  Google Scholar 

  4. W.S. Lee, J.Y. Jeong, H.B. Kim, K.H. Chae, C.N. Whang, S. Im, J.H. Song, Mater. Sci. Eng. B 69–70, 474 (2000)

    Article  Google Scholar 

  5. T. Gebel, Dissertation work, TU Dresden (2002)

  6. N. Nazarov, I.N. Osiyuk, V.S. Lysenko, T. Gebel, L. Rebohle, W. Skorupa, Microelectron. Reliab. 42, 1461 (2002)

    Article  Google Scholar 

  7. N. Nazarov, T. Gebel, L. Rebohle, W. Skorupa, I.N. Osiyuk, V.S. Lysenko, J. Appl. Phys. 94, 4440 (2003)

    Article  ADS  Google Scholar 

  8. L. Rebohle, T. Gebel, J. von Borany, W. Skorupa, M. Helm, D. Pacifici, G. Franzo, F. Priolo, Appl. Phys. B 74, 53 (2002)

    Article  ADS  Google Scholar 

  9. W. Skorupa, L. Rebohle, T. Gebel, Appl. Phys. A 76, 1049 (2003)

    Article  ADS  Google Scholar 

  10. M.P. Houng, Y.H. Wang, W.J. Chang, J. Appl. Phys. 86, 1488 (1999)

    Article  ADS  Google Scholar 

  11. W.S. Lee, J.Y. Jeong, H.B. Kim, K.H. Chae, C.N. Whang, S. Im, J.H. Song, Appl. Surf. Sci. 169–170, 463 (2001)

    Article  Google Scholar 

  12. J.M.J. Lopes, F.C. Zawislak, M. Behar, P.F.P. Fichtner, L. Rebohle, W. Skorupa, J. Appl. Phys. 94, 6059 (2003)

    Article  ADS  Google Scholar 

  13. K. Nagasawa, Y. Ohki, Y. Huma, Japan. J. Appl. Phys. 26, L1009 (1987)

    Article  Google Scholar 

  14. S. Munekumi, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, J. Appl. Phys. 68, 1212 (1990)

    Article  ADS  Google Scholar 

  15. S. Im, J.Y. Jeong, M.S. Oh, H.B. Kim, K.H. Chae, C.N. Whang, J.H. Song, Appl. Phys. Lett. 74, 961 (1999)

    Article  ADS  Google Scholar 

  16. V.V. Afanas’ev, V.K. Adamchuk, Prog. Surf. Sci. 47, 301 (1994)

    Article  Google Scholar 

  17. G. Franzo, S. Coffa, F. Priolo, C. Spinella, J. Appl. Phys. 81, 2784 (1997)

    Article  ADS  Google Scholar 

  18. J.Y. Zhang, X.-M. Bao, Y.-H. Ye, X.-L. Tan, Appl. Phys. Lett. 73, 1790 (1998)

    Article  ADS  Google Scholar 

  19. M.V. Fischetti, D.J. DiMaria, S.D. Brorson, T.N. Teis, J.R. Kirtley, Phys. Rev. B 31, 8124 (1985)

    Article  ADS  Google Scholar 

  20. D. Arnold, E. Cartier, D.J. DiMaria, Phys. Rev. B 49, 10278 (1994)

    Article  ADS  Google Scholar 

  21. J.W. McPherson, H.C. Mogul, J. Appl. Phys. 84, 1513 (1998)

    Article  ADS  Google Scholar 

  22. J.W. McPherson, J. Appl. Phys. 99, 083501 (2006)

    Article  Google Scholar 

  23. T. Uchino, M. Takahashi, T. Yoko, Appl. Phys. Lett. 79, 359 (2001)

    Article  ADS  Google Scholar 

  24. G. Pacchioni, C. Mazzeo, Phys. Rev. B 62, 5452 (2000)

    Article  ADS  Google Scholar 

  25. J.K. Rudra, W.B. Fowler, Phys. Rev. B 35, 8223 (1987)

    Article  ADS  Google Scholar 

  26. G. Pacchioni, G. Ierano, Phys. Rev. B 56, 7304 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prucnal.

Additional information

PACS

72.20.Jv; 73.40.Qv; 73.50.Gr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A., Osiyuk, I., Sun, J. et al. Quenching of electroluminescence and charge trapping in high-efficiency Ge-implanted MOS light-emitting silicon diodes. Appl. Phys. B 87, 129–134 (2007). https://doi.org/10.1007/s00340-006-2534-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2534-1

Keywords

Navigation