Skip to main content
Log in

Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: Results for a high-stability 40Ca optical frequency standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Using a Ca optical frequency standard at 657 nm, we demonstrate a method that reduces uncertainties in absolute frequency measurements of optical transitions using freely expanding neutral atoms. Working with atoms that have been laser cooled to 10 μK, we have developed and employed a new technique that combines launching of cold atom clouds with atom interferometry to measure and optimise spectroscopy beam parameters. When applied to a frequency standard with laser beams of high spatial quality, this approach can potentially reduce residual Doppler effect uncertainties to well below one part in 1016. With Doppler uncertainties greatly suppressed, we investigate other potential shifts at the 1-Hz level with a multiplexed measurement system that takes advantage of the low instability of the calcium frequency standard (4×10-15 at 1 s). The resultant fractional frequency uncertainty for the standard is 6.6×10-15, the lowest uncertainty reported to date for a neutral atom optical standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Opt. Lett. 24, 881 (1999)

    Article  ADS  Google Scholar 

  2. T. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Phys. Rev. Lett. 86, 4996 (2001)

    Article  ADS  Google Scholar 

  3. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, Phys. Rev. Lett. 84, 5102 (2000)

    Article  ADS  Google Scholar 

  4. L.S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Science 303, 1843 (2004)

    Article  ADS  Google Scholar 

  5. S.A. Diddams, J.C. Bergquist, S.R. Jefferts, C.W. Oates, Science 306, 1318 (2004)

    Article  ADS  Google Scholar 

  6. H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355 (2004)

    Article  ADS  Google Scholar 

  7. E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, C. Tamm, S.G. Karshenboim, Laser Phys. 15, 1028 (2005)

    Google Scholar 

  8. W.H. Oskay, S.A. Diddams, E.A. Donley, T.M. Fortier, T.P. Heavner, L. Hollberg, W.M. Itano, S.R. Jefferts, M.J. Delaney, K. Kim, F. Levi, T.E. Parker, J.C. Bergquist, Phys. Rev. Lett. 97, 020801 (2006)

    Article  ADS  Google Scholar 

  9. M. Takamoto, F.L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  10. U. Sterr, C. Degenhardt, H. Stoehr, C. Lisdat, H. Schnatz, J. Helmcke, F. Riehle, G. Wilpers, C.W. Oates, L. Hollberg, C.R. Physique 5, 845 (2004)

    Article  ADS  Google Scholar 

  11. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F.P.D. Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, Phys. Rev. Lett. 92, 230802 (2004)

    Article  ADS  Google Scholar 

  12. F. Ruschewitz, J.L. Peng, H. Hinderthür, N. Schaffrath, K. Sengstock, W. Ertmer, Phys. Rev. Lett. 80, 3173 (1998)

    Article  ADS  Google Scholar 

  13. K.R. Vogel, T.P. Dinneen, A. Gallagher, J.L. Hall, IEEE Trans. Instrum. Meas. 48, 618 (1999)

    Article  Google Scholar 

  14. H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 1116 (1999)

    Article  ADS  Google Scholar 

  15. E.A. Curtis, C.W. Oates, L. Hollberg, Phys. Rev. A 64, 031403(R) (2001)

    Article  ADS  Google Scholar 

  16. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T.E. Mehlstäubler, E.M. Rasel, W. Ertmer, Phys. Rev. Lett. 87, 123002 (2001)

    Article  ADS  Google Scholar 

  17. E.A. Curtis, C.W. Oates, L. Hollberg, J. Opt. Soc. Am. B 20, 977 (2003)

    Article  ADS  Google Scholar 

  18. C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-O. Pottie, U. Sterr, J. Helmcke, F. Riehle, Phys. Rev. A 72, 062111 (2005)

    Article  ADS  Google Scholar 

  19. T. Ido, T.H. Loftus, M.M. Boyd, A.D. Ludlow, K.W. Holman, J. Ye, Phys. Rev. Lett. 94, 153001 (2005)

    Article  ADS  Google Scholar 

  20. G. Wilpers, C. Degenhardt, T. Binnewies, A. Chernyshov, F. Riehle, J. Helmcke, U. Sterr, Appl. Phys. B 76, 149 (2003)

    Article  ADS  Google Scholar 

  21. C.W. Oates, F. Bondu, R.W. Fox, L. Hollberg, Eur. Phys. J. D 7, 449 (1999)

    Article  ADS  Google Scholar 

  22. E.A. Curtis, Quenched narrow-line laser cooling of 40Ca with application to an optical clock based on ultracold neutral Ca atoms. Tech. Rep., National Institute of Standards and Technology, Boulder, CO, USA; Dissertation, University of Colorado, Boulder (2003)

  23. T. Kurosu, F. Shimizu, Japan J. Appl. Phys. 31, 908 (1992)

    Article  ADS  Google Scholar 

  24. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)

    Article  ADS  Google Scholar 

  25. L. Hollberg, S.A. Oates, A. Bartels, T. Fortier, K. Kim, Metrologia 42, 2037 (2005)

    Article  Google Scholar 

  26. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Phys. Rev. A 47, 3554 (1993)

    Article  ADS  Google Scholar 

  27. G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, F. Riehle, Phys. Rev. Lett. 89, 230801-1 (2002)

    Article  ADS  Google Scholar 

  28. C.J. Bordé, C. Salomon, S. Avrillier, A. Van Lerberghe, C. Bréant, D. Bassi, G. Scoles, Phys. Rev. A 30, 1836 (1984)

    Article  ADS  Google Scholar 

  29. C.J. Bordé, Phys. Lett. A 140, 10 (1989)

    Article  ADS  Google Scholar 

  30. C.W. Oates, G. Wilpers, L. Hollberg, Phys. Rev. A 71, 023404 (2005)

    Article  ADS  Google Scholar 

  31. Y. Omi, A. Morinaga, Appl. Phys. B 67, 621 (1998)

    Article  ADS  Google Scholar 

  32. T. Trebst, T. Binnewies, J. Helmcke, F. Riehle, IEEE Trans. Instrum. Meas. 50, 535 (2001)

    Article  Google Scholar 

  33. L. Hollberg, C.W. Oates, E.A. Curtis, E.N. Ivanov, S.A. Diddams, T. Udem, H.G. Robinson, J.C. Bergquist, R.J. Rafac, W.M. Itano, R.E. Drullinger, D.J. Wineland, IEEE J. Quantum Electron. QE-37, 1502 (2001)

    Article  ADS  Google Scholar 

  34. L. Hollberg, C.W. Oates, G. Wilpers, C.W. Hoyt, Z.W. Barber, S.A. Diddams, W.H. Oskay, J.C. Bergquist, J. Phys. B 38, 469 (2005)

    Article  ADS  Google Scholar 

  35. G.J. Dick, J. Prestage, C. Greenhall, L. Maleki, Local oscillator induced degradation of medium-term stability in passive atomic frequency standards. In Proc. 22nd Annu. Precise Time and Time Interval (PTTI) Applications and Planning Meet., Vienna, VA, USA, 1990, pp. 487–509

  36. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick, A. Clairon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 (1998)

    Article  Google Scholar 

  37. A. Quessada, R. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, P. Lemonde, J. Opt. B 5, S150 (2003)

    ADS  Google Scholar 

  38. G. Zinner, Ein optisches Frequenznormal auf der Basis lasergekühlter Calciumatome. PTB-Bericht PTB-Opt-58, Physikalisch-Technische Bundesanstalt, Braunschweig (1998)

  39. K. Zeiske, Atominterferometrie in statischen elektrischen Feldern. PTB-Bericht PTB-Opt-48, Physikalisch-Technische Bundesanstalt, Braunschweig (1995)

  40. J.W. Farley, W.H. Wing, Phys. Rev. A 23, 2397 (1981)

    Article  ADS  Google Scholar 

  41. N. Beverini, E. Maccioni, F. Strumia, J. Opt. Soc. Am. B 15, 2206 (1998)

    Article  ADS  Google Scholar 

  42. N. Beverini, F. Strumia, High precision measurements of the Zeeman effect in the calcium metastable states. In Interaction of Radiation with Matter, A Volume in Honour of A. Gozzini (Quaderni della Scuola Normale Superiore de Pisa, Pisa, 1987), pp. 361–373

  43. C. Degenhardt, T. Nazarova, C. Lisdat, H. Stoehr, U. Sterr, F. Riehle, IEEE Trans. Instrum. Meas. 54, 771 (2005)

    Article  Google Scholar 

  44. G. Wilpers, Ein Optisches Frequenznormal mit kalten und ultrakalten Atomen. PTB-Bericht PTB-Opt-66, Physikalisch-Technische Bundesanstalt, Braunschweig [ISBN 3-89701-892-6]; Dissertation, University of Hannover (2002)

  45. T. Kisters, K. Zeiske, F. Riehle, J. Helmcke, Appl. Phys. B 59, 89 (1994)

    Article  ADS  Google Scholar 

  46. L.S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.W. Oates.

Additional information

PACS

06.30.Ft; 32.30.-r; 39.20.+q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilpers, G., Oates, C. & Hollberg, L. Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: Results for a high-stability 40Ca optical frequency standard. Appl. Phys. B 85, 31–44 (2006). https://doi.org/10.1007/s00340-006-2400-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2400-1

Keywords

Navigation