Skip to main content
Log in

Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A fast Fourier transform (FFT) method for analysis of ring-down decays from a cavity ring-down (CRD) spectrometer has been tested and compared with alternative fitting methods. The ring-down times derived from the FFT method are obtained with a precision close to that of the Levenberg–Marquardt non-linear least-squares method, but the fitting algorithm is ~100 times faster, allowing real-time fitting of individual ring-down traces on a personal computer. Advantages of the FFT method are discussed, and the method is demonstrated for the measurement of NO2 partial pressures equivalent to mixing ratios of 150 pptv and above in laboratory air, using a CRD spectrometer based on an external cavity diode laser operating at wavelengths around 410 nm. The absorption by NO2 is distinguished from other cavity losses either by using synthetic (zero) air reference samples, or by diverting the sampled laboratory airflow through an NO2 chemical scrubber consisting of hydroxyapatite on a TiO2 substrate. Typical mixing ratios of NO2 in the laboratory air are ~25 ppbv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Brown, Chem. Rev. 103, 5219 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. D.B. Atkinson, Analyst 128, 117 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally, Chem. Rev. 97, 25 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998)

    Article  CAS  Google Scholar 

  5. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  CAS  Google Scholar 

  6. S.M. Ball, R.L. Jones, Chem. Rev. 103, 5239 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. B.L. Fawcett, A.M. Parkes, D.E. Shallcross, A.J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002)

    Article  CAS  Google Scholar 

  8. A.M. Parkes, B.L. Fawcett, R.E. Austin, S. Nakamichi, D.E. Shallcross, A.J. Orr-Ewing, Analyst 128, 960 (2003)

    Article  CAS  Google Scholar 

  9. A.M. Parkes, R.E. Lindley, A.J. Orr-Ewing, Anal. Chem. 76, 7329 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  CAS  Google Scholar 

  11. M.I. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. C (in press)

  12. M.I. Mazurenka, A.J. Orr-Ewing, Chem. Phys. Lett. 367, 1 (2003)

    Article  CAS  Google Scholar 

  13. R.P. Wayne, Chemistry of Atmospheres (Oxford University Press, Oxford, 2000)

    Google Scholar 

  14. S.S. Brown, H. Stark, S.J. Ciciora, R.J. McLaughlin, A.R. Ravishankara, Rev. Sci. Instrum. 73, 3291 (2002)

    Article  CAS  Google Scholar 

  15. H. Okabe, Photochemistry of Small Molecules (Wiley Interscience, New York, 1978)

    Google Scholar 

  16. The HITRAN database, www.hitran.com

  17. L.J. Dowell, G.T. Gillies, Rev. Sci. Instrum. 62, 242 (1991)

    Article  CAS  Google Scholar 

  18. A.A. Istratov, O.F. Vyvenko, Rev. Sci. Instrum. 70, 1233 (1999)

    Article  CAS  Google Scholar 

  19. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, Rev. Sci. Instrum. 71, 347 (2000)

    Article  CAS  Google Scholar 

  20. T. von Lerber, M.W. Sigrist, Chem. Phys. Lett. 353, 131 (2002)

    Article  CAS  Google Scholar 

  21. D. Halmer, G. von Basum, P. Hering, M. Mürtz, Rev. Sci. Instrum. 75, 2187 (2004)

    Article  CAS  Google Scholar 

  22. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C; The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  23. P.D. Kirchner, W.J. Schaff, G.N. Maracas, L.F. Eastman, T.I. Chappell, C.M. Ransom, J. Appl. Phys. 52, 6462 (1981)

    Article  CAS  Google Scholar 

  24. K. Ikeda, H. Takaoka, Jpn. J. Appl. Phys. Part 1 21, 462 (1982)

    CAS  Google Scholar 

  25. C.D. Wang, H.C. Lin, J. Appl. Phys. 52, 546 (1981)

    Article  CAS  Google Scholar 

  26. M. Okuyama, H. Takakura, Y. Hamakawa, Solid-State Electron. 26, 689 (1983)

    Article  CAS  Google Scholar 

  27. P.D. Devries, A.A. Khan, J. Electron. Mater. 18, 543 (1989)

    CAS  Google Scholar 

  28. P.D. Devries, A.A. Khan, J. Electron. Mater. 18, 763 (1989)

    Google Scholar 

  29. W.S. Moore, T. Yalcin, J. Magn. Reson. 11, 50 (1973)

    CAS  Google Scholar 

  30. F. Hasegawa, Jpn. J. Appl. Phys. Part 1 24, 1356 (1985)

    CAS  Google Scholar 

  31. C.A.B. Ball, A.B. Conibear, Mater. Sci. Forum 83–87, 1147 (1992)

    Google Scholar 

  32. P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  Google Scholar 

  33. R.D. van Zee, J.T. Hodges, J.P. Looney, Appl. Opt. 38, 3951 (1999)

    Google Scholar 

  34. K.R. Yoshino, J.R. Esmond, W.H. Parkinson, Chem. Phys. 221, 169 (1997)

    Article  CAS  Google Scholar 

  35. Y. Komazaki, H. Shimizu, S. Tanaka, Atm. Environ. 33, 4363 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Orr-Ewing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurenka, M., Wada, R., Shillings, A.J.L. et al. Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2. Appl. Phys. B 81, 135–141 (2005). https://doi.org/10.1007/s00340-005-1834-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1834-1

PACS

Navigation