Skip to main content
Log in

Nanolithography with metastable helium atoms in a high-power standing-wave light field

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have created periodic nanoscale structures in a gold substrate with a lithography process using metastable triplet helium atoms that damage a hydrophobic resist layer on top of the substrate. A beam of metastable helium atoms is transversely collimated and guided through an intense standing-wave light field. Compared to commonly used low-power optical masks, a high-power light field (saturation parameter of 107) increases the confinement of the atoms in the standing wave considerably, and makes the alignment of the experimental setup less critical. Due to the high internal energy of the metastable helium atoms (20 eV), a dose of only one atom per resist molecule is required. With an exposure time of only eight minutes, parallel lines with a separation of 542 nm and a width of 100 nm (one-eleventh of the wavelength used for the optical mask) are created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Meschede, H. Metcalf: J. Phys. D 36, R17 (2003)

  2. G. Timp, R.E. Behringer, D.M. Tennant, J.E. Cunningham, M. Prentiss, K.K. Berggren: Phys. Rev. Lett. 69, 1636 (1992)

    Article  Google Scholar 

  3. J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta: Science 262, 877 (1993)

    Google Scholar 

  4. R.W. McGowan, D.M. Giltner, S.A. Lee: Opt. Lett. 20, 2535 (1995)

    Google Scholar 

  5. R. Ohmukai, S. Urabe, M. Watanabe: Appl. Phys. B 77, 415 (2003)

    Google Scholar 

  6. Y. Xia, X.M. Zhao, E. Kim, G.M. Whitesides: Chem. Mater. 7, 2332 (1995)

    Google Scholar 

  7. K.K. Berggren, A. Bard, J.L. Wilbur, J.D. Gillaspy, A.G. Helg, J.J. McClelland, S.L. Rolston, W.D. Phillips, M. Prentiss, G.M. Whitesides: Science 269, 1255 (1995)

    Google Scholar 

  8. S.J. Rehse, A.D. Glueck, S.A. Lee, A.B. Goulakov, C.S. Menoni, D.C. Ralph, K.S. Johnson, M. Prentiss: Appl. Phys. Lett. 71, 1427 (1997)

    Article  Google Scholar 

  9. S. Nowak, T. Pfau, J. Mlynek: Appl. Phys. B 63, 203 (1996)

    Article  Google Scholar 

  10. W. Lu, K.G.H. Baldwin, M.D. Hoogerland, S.J. Buckman, T.J. Senden, T.E. Sheridan, R.W. Boswell: J. Vac. Sci. Technol. B 16, 3846 (1998)

    Article  Google Scholar 

  11. X. Ju, M. Kurahashi, T. Suzuki, Y. Yamauchi: Jpn. J. Appl. Phys. Part 1 42, 4767 (2003)

    Article  Google Scholar 

  12. F. Lison, H.J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede: Appl. Phys. B 65, 419 (1997)

    Article  Google Scholar 

  13. K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss: Science 280, 1583 (1998)

    Article  Google Scholar 

  14. P. Engels, S. Salewski, H. Levsen, K. Sengstock, W. Ertmer: Appl. Phys. B 69, 407 (1999)

    Article  Google Scholar 

  15. A. Ashkin: Phys. Rev. Lett. 40, 729 (1978)

    Article  Google Scholar 

  16. V.G. Minogin, O.T. Serimaa: Opt. Commun. 30, 373 (1979)

    Google Scholar 

  17. S.J.H. Petra, K.A.H. van Leeuwen, L. Feenstra, W. Hogervorst, W. Vassen: Eur. Phys. J. D 27, 83 (2003)

    Google Scholar 

  18. W.R. Anderson, C.C. Bradley, J.J. McClelland, R.J. Celotta: Phys. Rev. A 59, 2476 (1999)

    Article  Google Scholar 

  19. W. Rooijakkers, W. Hogervorst, W. Vassen: Opt. Commun. 123, 321 (1996)

    Article  Google Scholar 

  20. A. Aspect, N. Vansteenkiste, R. Kaiser, H. Haberland, M. Karrais: Chem. Phys. 145, 307 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.J.H. Petra.

Additional information

PACS

32.80.Lg; 39.25.+k; 81.16.Nd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petra, S., Feenstra, L., Hogervorst, W. et al. Nanolithography with metastable helium atoms in a high-power standing-wave light field. Appl Phys B 78, 133–136 (2004). https://doi.org/10.1007/s00340-003-1371-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1371-8

Keywords

Navigation