Skip to main content
Log in

Synthesis of novel CaF2 − CaO − Na2O − B2O3−SiO2 bioglass system: phase transformation, surface reaction and mechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research aims to investigate the potential of novel CaF2 − CaO − Na2O − B2O3−SiO2 glass systems and converted to bioactive glass-ceramics. The study involves examining the effects of different heat treatment temperatures and immersion periods, with the goal of exploring these materials as viable alternatives for various biomedical applications. A typical melt-quenching technique was used to synthesize the glass samples, followed by a controlled heat treatment. The main crystalline phases are cuspidine and wollastonite, which have the potential to promote bioactivity, especially in dental and bone-related applications. The sample heat-treated at 700 °C showed an increased microhardness and fracture toughness by more than 116% and 36%, compared to the initial value. Furthermore, the increase in pH and the observed weight loss/gain demonstrated the reactivity of the samples with the phosphate buffer-saline medium, indicating their bioactive properties. Remarkably, the microhardness and fracture toughness exhibited notable improvements after 14 days of immersion, with an enhancement of 4.71% and 4.66%, highlighting their potential durability and longevity in high-strength dental crown applications. Consequently, this research presents a promising method for developing sustainable novel glass and glass-ceramic materials devoid of phosphates. These materials boast enhanced mechanical properties while preserving bioactivity, making them well-suited for dental implants and restorative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data are available upon request.

References

  1. Q. Nawaz, T. Fiedler, J. Biggemann, T. Fey, A.R. Boccaccini, Flexural strength of biopolymer coated bioactive glass (45S5) sintered struts for bone tissue engineering applications. Mater. Lett. 337, 133957 (2023)

    Article  Google Scholar 

  2. S.M. Hsu, F. Ren, C. Batich, A.E. Clark, V. Craciun, Esquivel-Upshaw, dissolution activation energy of a fluorapatite glass-ceramic veneer for dental applications. Mater. Sci. Eng. C 111, 110802 (2020)

    Article  Google Scholar 

  3. P. Satyanarayana, A.V. Deshpande, V.K. Deshpande, S. Singh, Influence of ZrO2 and P2O5 addition on phase formation, optical transmittance and microhardness in lithium disilicate based glass-ceramics. J. Non Cryst. Solids. 600, 122023 (2023)

    Article  Google Scholar 

  4. S. Luo, Z. Wang, X. Zhang, H. Wu, Y. Wang, Y. Dou, S. Yan, Y. Chen, Effect of Ce and Er doping on crystal morphology and mechanical properties of dental restoration material Li2O-Al2O3-SiO2 glass ceramics. J. Non Cryst. Solids. 600, 122026 (2023)

    Article  Google Scholar 

  5. Z.W. Loh, M.H.M. Zaid, K.A. Matori, M.M.A. Kechik, Y.W. Fen, M.Z.H. Mayzan, S. Liza, W.M. Cheong, Phase transformation and mechanical properties of new bioactive glass-ceramics derived from CaO–P2O5–Na2O–B2O3–SiO2 glass system. J. Mech. Behav. Biomed. Mater. 143, 105889 (2023)

    Article  Google Scholar 

  6. B. Karasu, A.O. Yanar, A. Kocak, Ö. Kisacik, Bioactive glasses. J. Sci. Eng. (2019) 813–849

  7. O. Rodriguez, A. Alhalawani, S. Arshad, M. Towler, Rapidly-dissolving silver-containing bioactive glasses for cariostatic applications. J. Funct. Biomater. 9, 28 (2018)

    Article  Google Scholar 

  8. S.N.F.S. Adam, F. Zainuddin, A.F. Osman, Effect of varying phosphate content on the structure and properties of sol-gel derived SiO2-CaO-P2O5 bio-glass, J. Phys. Conf. Ser. 2080 (2021)

  9. V.K. Marghussian, A.S. Mesgar, Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system. 26 (2000) 415–420

  10. N.A. Al-eesa, S.D. Fernandes, R.G. Hill, F.S.L. Wong, U. Jargalsaikhan, S. Shahid, Remineralising fluorine containing bioactive glass composites. Dent. Mater. 37, 672–681 (2021)

    Article  Google Scholar 

  11. N.N. Yusof, S.M. Aziz, F.M. Noor, S.N.S. Yaacob, S. Hashim, A novel borate-based 45S5 Bioglass®: in vitro assessment in phosphate-buffered saline solution. J. Non Cryst. Solids. 596, 121843 (2022)

    Article  Google Scholar 

  12. L. Deilmann, O. Winter, B. Cerrutti, H. Bradtmüller, C. Herzig, A. Limbeck, O. Lahayne, C. Hellmich, H. Eckert, D. Eder, Effect of boron incorporation on the bioactivity, structure, and mechanical properties of ordered mesoporous bioactive glasses. J. Mater. Chem. B 8, 1456–1465 (2020)

    Article  Google Scholar 

  13. E. Piatti, E. Verné, M. Miola, Synthesis and characterization of sol-gel bioactive glass nanoparticles doped with boron and copper. Ceram. Int. 48, 13706–13718 (2022)

    Article  Google Scholar 

  14. A. Kumar, C.R. Mariappan, A new biocompatible phosphate free mesoporous calcium borosilicate glass-ceramics for medical application. Mater. Lett. 305, 130752 (2021)

    Article  Google Scholar 

  15. P. Jha, S.S. Danewalia, G. Sharma, K. Singh, Antimicrobial and bioactive phosphate-free glass-ceramics for bone tissue engineering applications. Mater. Sci. Eng. 86, 9–17 (2018)

    Article  Google Scholar 

  16. B. Cabal, L. Alou, F. Cafini, R. Couceiro, D. Sevillano, L. Esteban-Tejeda, F. Guitián, R. Torrecillas, J.S. Moya, A new biocompatible and antibacterial phosphate free glass-ceramic for medical applications. Sci. Rep. 4, 5440 (2014)

    Article  ADS  Google Scholar 

  17. G. Kirste, A.C. Martín, A.D. Pablos-Martins, J.M.D.S.E. Silva, J. Massera, R.G. Hill, D.S. Brauer, Bioactive glass – ceramics containing fluorapatite, xonotlite, cuspidine and wollastonite form apatite faster than their corresponding glasses. Sci. Rep. 14, 3997 (2024)

    Article  Google Scholar 

  18. S. Prasad, S. Ganisetti, A. Jana, S. Kant, P.K. Sinha, S. Tripathy, K. Illath, T.G. Ajithkumar, K. Annapurna, A.R. Allu, K. Biswas, Elucidating the effect of CaF2 on structure, biocompatibility and antibacterial properties of S53P4 glass. J. Alloys Compd. 831, 154704 (2020)

    Article  Google Scholar 

  19. K. Harada, A. Shinya, H. Gomi, Y. Hatano, A. Shinya, A.J. Raigrodski, Effect of accelerated aging on the fracture toughness of zirconias. J. Prosthet. Dent. 115, 215–223 (2016)

    Article  Google Scholar 

  20. F.M. Stábile, C. Volzone, Crystallization and sintering of glasses formulated from different theoretical contents of leucite (L) and bioglass 45S5 (bg) (LxBg(100-x) x:25, 30, 40, 50): a comparative study on raw materials influence. Mater. Chem. Phys. 238 (2019)

  21. Z.W. Loh, M.H.M. Zaid, M.M.A. Kechik, Y.W. Fen, Y. Yaakob, M.Z.H. Mayzan, S. Liza, W.M. Cheong, Effect of CaF2/P2O5 ratios on physical and mechanical properties of novel CaO–Na2O–B2O3–SiO2 glasses. J. Phys. Chem. Solids. 171, 110991 (2022)

    Article  Google Scholar 

  22. Z. Luo, F. He, W. Zhang, Y. Xiao, J. Xie, R. Sun, M. Xie, Effects of fluoride content on structure and properties of steel slag glass-ceramics. Mater. Chem. Phys. 242, 122531 (2020)

    Article  Google Scholar 

  23. T. min Yeo, J.M. Jeon, S.H. Hyun, H.M. Ha, J.W. Cho, Effects of Li2O on structure of CaO-SiO2-CaF2-Na2O glasses and origin of crystallization delay. J. Mol. Liq 347 (2022)

  24. S.S. Hossain, S. Yadav, S. Majumdar, S. Krishnamurthy, R. Pyare, P.K. Roy, A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes. Ceram. Int. 46, 833–843 (2020)

    Article  Google Scholar 

  25. Z.W. Loh, M.H.M. Zaid, M.M.A. Kechik, Y.W. Fen, Y. Yaakob, M.Z.H. Mayzan, S. Liza, W.M. Cheong, Effect of CaF2/P2O5 ratios on physical and mechanical properties of novel CaO–Na2O–B2O3–SiO2 glasses. J. Phys. Chem. Solids. 171, 110991 (2022). https://doi.org/10.1016/j.jpcs.2013.09.004

    Article  Google Scholar 

  26. F.A. da Silva Fernandes, S. Arcaro, E.F. Tochtrop Junior, J.C. Valdés, C.P. Serra, Bergmann, Glass foams produced from soda-lime glass waste and rice husk ash applied as partial substitutes for concrete aggregates. Process. Saf. Environ. Prot. 128, 77–84 (2019)

    Article  Google Scholar 

  27. K. Dimitriadis, D.U. Tulyaganov, S. Agathopoulos, Development of novel alumina-containing bioactive glass-ceramics in the CaO-MgO-SiO2 system as candidates for dental implant applications. J. Eur. Ceram. 41, 929–940 (2021)

    Article  Google Scholar 

  28. H.A. Lutpi, H. Mohamad, T.K. Abdullah, H. Ismail, Effect of sintering treatment time on the sintering behaviour and thermal shock resistance of Li2O- Al2O3-SiO2 glass-ceramics. J. Asian Ceram. Soc. 9, 507–518 (2021)

    Article  Google Scholar 

  29. F. Pei, G. Zhu, P. Li, H. Guo, P. Yang, Effects of CaF2 on the sintering and crystallisation of CaO–MgO–Al2O3–SiO2. Ceram. Int. 46, 17825–17835 (2020)

    Article  Google Scholar 

  30. A. Kraipok, P. Intawin, M. Kamnoy, P. Bintachitt, W. Leenakul, S. Panyata, S. Eitssayeam, T. Tunkasiri, K. Pengpat, Preparation and characterization of lithium disilicate-fluorcanasite glass-ceramics for dental applications. J. Mech. Behav. Biomed. Mater. 137, 105548 (2023)

    Article  Google Scholar 

  31. S.A. Saadaldin, S.J. Dixon, D.O. Costa, A.S. Rizkalla, Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications. Dent. Mater. 29, 645–655 (2013)

    Article  Google Scholar 

  32. D. Chaysuwan, K. Sinukunwattana, K. Kanchanatawewat, G. Heness, K. Yamashita, Machinable glass-ceramics forming as a restorative dental material. Dent. Mater. J. 30, 358–367 (2011)

    Article  Google Scholar 

  33. S.S. Owoeye, S.M. Abegunde, D.O. Folorunso, B.O. Adigun, Kingsley, microstructure, phase and physical evaluation of non-bioactive wollastonite glass-ceramic prepared from waste glass by sintering method. Open. Ceram. 5, 100062 (2021)

    Article  Google Scholar 

  34. S.Z. Zhao, X.Y. Zhang, B. Liu, J.J. Zhang, H.L. Shen, S.G. Zhang, Preparation of glass–ceramics from high-chlorine MSWI fly ash by one-step process. Rare Met. 40, 3316–3328 (2021)

    Article  Google Scholar 

  35. S.G. Borisade, S.S. Owoeye, K.V. Ajayi, S.I. Enewo, A. Abdullahi, Investigation of physical, mechanical and in-vitro bioactivity of bioactive glass-ceramics fabricated from waste soda-lime-silica glass doped P2O5 by microwave irradiation sintering. Hybrid. Adv. 6, 100203 (2024)

    Article  Google Scholar 

  36. G.Y. Hung, P.Y. Chen, C.Y. Wang, C.S. Tu, C.S. Chen, P.L. Lai, K.C. Feng, Tailoring bioactive and mechanical properties in polycrystalline CaO–SiO2–P2O5 glass-ceramics. Ceram. Int. 49, 7289–7298 (2023)

    Article  Google Scholar 

  37. N.G. Panah, R. Atkin, T.B. Sercombe, Bioactivity and biodegradability of high temperature sintered 58S ceramics. J. Eur. Ceram. 42, 3614–3623 (2022)

    Article  Google Scholar 

  38. M.R. Shahrouzifar, E. Salahinejad, E. Sharifi, Co-incorporation of strontium and fluorine into diopside scaffolds: Bioactivity, biodegradation and cytocompatibility evaluations. Mater. Sci. Eng. C 103, 109752 (2019)

    Article  Google Scholar 

  39. A. Shearer, M. Montazerian, J.C. Mauro, Modern definition of bioactive glasses and glass-ceramics. J. Non Cryst. Solids. 608, 122228 (2023)

    Article  Google Scholar 

  40. L.L. Hench, J. Wilson, Surface-Active Biomaterials Sci. 226, 1–8 (1980)

    Google Scholar 

  41. M. Mozafari, S. Banijamali, F. Baino, S. Kargozar, R.G. Hill, Calcium carbonate: Adored and ignored in bioactivity assessment. Acta Biomater. 91, 35–47 (2019)

    Article  Google Scholar 

  42. F. Li, Y. Jiang, M. Chen, B. Yu, J. Wang, F. Wang, Effect of ZrO2 addition on in-vitro bioactivity and mechanical properties of SiO2–Na2O–CaO–P2O5 bioactive glass-ceramic. Ceram. Int. 48, 18541–18550 (2022)

    Article  Google Scholar 

  43. N.M. Possolli, D.F.D. Silva, J. Vieira, N. Maurmann, P. Pranke, K.B. Demetrio, E. Angioletto, O.R.K. Montedo, S. Arcaro, Dissolution, bioactivity behavior, and cytotoxicity of 19.58Li2O·11.10ZrO2·69.32SiO2 glass–ceramic. J. Biomed. Mater. Res. (2021) 1–12

  44. E.A. Mahdy, Z.Y. Khattari, W.M. Salem, S. Ibrahim, Study the structural, physical, and optical properties of CaO–MgO–SiO2–CaF2 bioactive glasses with Na2O and P2O5 dopants. J. Mater. Chem. 286, 126231 (2022)

    Google Scholar 

  45. A. Kraipok, T. Mamanee, J. Ruangsuriya, W. Leenakul, Investigation of phase formation and mechanical properties of lithium disilicate glass-ceramic doped CeO2. J. Non Cryst. Solids. 561, 120772 (2021)

    Article  Google Scholar 

  46. M. Montazerian, F. Baino, E. Fiume, C. Migneco, A. Alaghmandfard, O. Sedighi, A.V. DeCeanne, C.J. Wilkinson, J.C. Mauro, Glass-ceramics in dentistry: fundamentals, technologies, experimental techniques, applications, and open issues. Prog Mater. Sci. 132, 101023 (2023)

    Article  Google Scholar 

  47. P. Takav, S. Banijamali, A. Sedaghat, A. Hossein, I. Mobasherpour, In fl uence of TiO2 content on phase evolution, microstructure and properties of fl uorcanasite glass-ceramics prepared through sintering procedure for dental restoration applications. Ceram. Int. 44, 7057–7066 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Universiti Putra Malaysia through the Geran Putra Inisiatif (GPI/2023/9762700) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Hafiz Mohd Zaid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, Z.W., Zaid, M.H.M., Matori, K.A. et al. Synthesis of novel CaF2 − CaO − Na2O − B2O3−SiO2 bioglass system: phase transformation, surface reaction and mechanical properties. Appl. Phys. A 130, 423 (2024). https://doi.org/10.1007/s00339-024-07591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07591-8

Keywords

Navigation