Skip to main content
Log in

Impact of Cu, Fe2O3, and Cu/Fe2O3 on the magnetic and structural characteristics of FeTiO2 nanocomposite synthesized through mechanical alloying processes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The synthesis of Fe/TiO2 nanocomposite soft magnetic materials, incorporating Cu, Fe2O3, and Cu/Fe2O3;, was achieved using the mechanical alloying technique. Advanced characterization methods, including Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), and Vibrating Sample Magnetometer (VSM), were employed for a comprehensive investigation of structural, morphological, and magnetic properties of the nanocomposite at different synthesis stages. The crystallite size reaches its minimum value, while the lattice strain (ε) attains its maximum value in the FeCu/TiO2 nanocomposite, measuring 26.85 nm and 0.35%, respectively. Coercivity, magnetic remanence, and squareness ratio of Fe/TiO2 showed an upward trend with increasing milling time, reaching peak values after 5 h of milling. The FeTiO2 nanocomposite achieved maximum values for coercivity, magnetic remanence, and saturation magnetization. Notably, the squareness ratio demonstrated notable values for both FeTiO2 and FeCuTiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data related to this study is available within the manuscript.

References

  1. R.J. Álvaro, N.D. Diana, A.M. María, Impedance analysis of TiO2 nanoparticles prepared by green chemical mechanism. Cont. Eng. Sci. 11, 737–744 (2018)

    Google Scholar 

  2. S. Chavali, Murthy, P. Maria, Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607 (2019)

    Article  Google Scholar 

  3. C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 828, 154281 (2020)

    Article  Google Scholar 

  4. P. Akhter, A. Arshad, A. Saleem, M. Hussain, Recent development in non-metal-doped titanium dioxide photocatalysts for different dyes degradation and the study of their strategic factors: a review. Catalysts. 12, 1331 (2022)

    Article  Google Scholar 

  5. J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114, 10131–10176 (2014)

    Article  Google Scholar 

  6. X. Wu, Applications of titanium dioxide materials. Titanium Dioxide—Advances Appl. (2021)

  7. X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Titanium dioxide: From engineering to applications, Catalysts 9,191 (2019)

  8. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16(38), 20382–20386 (2014)

    Article  Google Scholar 

  9. K. Ellmer, R. Mientus, S. Seeger, Metallic oxides (ITO, ZnO, SnO2, TiO2). Transparent Conductive Materials (Materials, Synthesis, Characterization, Applications, 2018), pp. 31–80

    Google Scholar 

  10. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent progress on titanium dioxide nanomaterials for photocatalytic applications. Chem. Sus Chem. 11, 3023–3047 (2018)

    Article  Google Scholar 

  11. I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. J. Mol. Liq. 285, 742–753 (2019)

    Article  Google Scholar 

  12. M.L. Vera, H.D. Traid, A.N. Dwojak, M.R. Rosenberger, and C. E. Schvezov, Advances in nanostructured TiO2coatings for industrial applications (Industrial Applications of Nanoparticles, 2023), pp. 228–255

  13. Z. Zahra, Z. Habib, Exposure route of TiO2 NPs from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials. 10, 1469 (2020)

    Article  Google Scholar 

  14. L.M. Anaya-Esparza, Z. Villagrán-de la, J.M. Mora, T. Romero-Toledo, S. Sandoval-Contreras, Aguilera-Aguirre, Pérez-Larios, Use of titanium dioxide (TiO2) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes. 8, 1395 (2020)

    Article  Google Scholar 

  15. Q. Meng, T. Wang, E. Liu, X. Ma, Q. Ge, J. Gong, Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Phys. Chem. Chem. Phys. 15, 9549–9561 (2013)

    Article  Google Scholar 

  16. A. Potbhare, P. Bhilkar, S. Yerpude, R. Madankar, S. Shingda, R. Adhikari, R. Chaudhary, Nanomaterials as Photocatalyst. Appl. Emerg. Nanomater Nanotechnol. 148, 304–333 (2023)

    Google Scholar 

  17. A. Chanda, K. Rout, M. Vasundhara, S.R. Joshi, J. Singh, Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv. 8(20), 10939–10947 (2018)

    Article  ADS  Google Scholar 

  18. E.T. Mombeshora, E. Muchuweni, M.L. Davies, V.O. Nyamori, B.S. Martincigh, Metal-organic chemical vapor deposition of Anatase Titania on multiwalled carbon nanotubes for electrochemical capacitors. Energy Sci. Eng. 10, 3493–3506 (2022)

    Article  Google Scholar 

  19. O. Avciata, Y. Benli, S. Gorduk, O. Koyun, Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: surface properties and photoactivity. J. Eng. Technol. Appl. Sci. 1(1), 34–50 (2016)

    Google Scholar 

  20. Y. Kissoum, D.E. Mekki, M. Bououdina, E. Sakher, S. Bellucci, Dependence of Fe doping and milling on TiO2 phase transformation: optical and magnetic studies. J. Supercond. Novel Magn. 33, 427–440 (2020)

    Article  Google Scholar 

  21. N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompanyb, M. Karimipour, B.G. Mendisd, N.R.J. Pooltone, L. Šiller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica F. 20(3), 1018–1022 (2013)

    Google Scholar 

  22. B. Prajapati, S. Kumar, M. Kumar, S. Chatterjee, A.K. Ghosh, Investigation of the physical properties of Fe: TiO2-diluted magnetic semiconductor nanoparticles. J. Mater. Chem. C 5, 4257–4267 (2017)

    Article  Google Scholar 

  23. T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express. 4, 015022 (2017)

    Article  ADS  Google Scholar 

  24. T. Ahmad, S. Khatoon, R. Phul, A review on chemical synthesis, characterization and optical properties of nanocrystalline transition metal doped dilute magnetic semiconductors. Solid State Phenom. 201, 103–129 (2013)

    Article  Google Scholar 

  25. A.N. Andriotis, M. Menon, Codoping induced enhanced ferromagnetism in diluted magnetic semiconductors. J. Phys.: Condens. Matter. 33, 393002 (2021)

    Google Scholar 

  26. H. Zhang, X. Ouyang, B. Yang, R. Lutes, Y. Ni, Synergistic effect of La and Co co-doping on room-temperature ferromagnetism enhancement of TiO2 nanoparticles. Ceram. Int. 44, 6362–6369 (2018)

    Article  Google Scholar 

  27. D. Kumar, P. Mandal, A. Singh, C. Pant, S. Sharma, Synthesis and characterization of Ni incorporated titanium dioxide thin films. J. Mater. Res. 33, 4165–4172 (2018)

    Article  ADS  Google Scholar 

  28. O. Adedokun, P. Sivaprakash, A.S. Ajani, I.T. Bello, S. Arumugam, Structural, optical and magnetic studies of sol-gel synthesized Mg-doped pure anatase TiO2 nanoparticles for spintronic and optoelectronics applications. Phys. B: Condens. Matter. 667, 415199 (2023)

    Article  Google Scholar 

  29. S. Zhang, Z. Zhou, R. Xiong, J. Shi, Z. Lu, H. Wang, The origin of ferromagnetism of co-doped TiO2 nanoparticles: experiments and theory investigation. Mod. Phys. Lett. B 30(32n33), 1650296 (2016)

    Article  ADS  Google Scholar 

  30. Q. Wang, X. Liu, X. Wei, J. Dai, W. Li, Ferromagnetic property of co and Ni doped TiO2 nanoparticles. J. Nanomater. 1–5 (2015), Article ID 371582

  31. N. Nithyaa, N.V. Jaya, Structural, optical, and magnetic properties of Gd-doped TiO2 nanoparticles. J. Supercond Nov Magn. 31, 4117–4126 (2018)

    Article  Google Scholar 

  32. S. Ahadi, N.S. Moalej, S. Sheibani, Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci. 96, 105975 (2019)

    Article  Google Scholar 

  33. C. Suryanarayana, Mechanical alloying: a novel technique to synthesize advanced materials, Research 2019, 1–17 (2019), Article ID 4219812, https://doi.org/10.34133/2019/4219812

  34. A. Dutta, N. Gayathri, R. Ranganathan, R., Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Phys. Rev. B 68, 054432 – Published 29 August 2003. https://doi.org/10.1103/PhysRevB.68.054432

  35. W. Su, G. He, X. Bao, C. He, Y. Li, L. Zhang, Y. Zhang, J. Liu, J. Chen, J. Chen, Y. Bai, S. Zhao, The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics. Appl. Phys. A 129, 108 (2023). https://doi.org/10.1007/s00339-023-06390-x

    Article  ADS  Google Scholar 

  36. F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, Mesoporous TiO2 thin films: state of the art, Titanium Dioxide-Material for a sustainable environment 508, 135–142 (2018)

  37. K. Ashok Kumar, K. Subalakshmi, J. Senthilselvan, Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. J. Solid State Electrochem. 20, 1921–1932 (2016)

    Article  Google Scholar 

  38. A. Younes, M. Khorchef, A. Bouamer, H. Amar, Magnetic and structural behavior of Fe-CoO nanocomposites mechanically milled. Mater. Sci. Eng. 557, 1–12 (2019)

    Google Scholar 

  39. A. Younes, N. Kherrouba, Eddy current and magnetic evaluation of nanostructured iron–cobalt produced by ball-milling. Emerg. Mater. Res. 11(2), 268–275 (2022)

    Google Scholar 

  40. M. Cernea, M. Secu, C.E. Secu, M. Baibarac, B.S. Vasile, Structural and thermoluminescence properties of undoped and Fe-doped-TiO2 nanopowders processed by sol–gel method. J. Nanopart. Res. 13, 77–85 (2011)

    Article  ADS  Google Scholar 

  41. S. Cynthia, S. Sagadevan, Physicochemical and magnetic properties of pure and Fe doped TiO2 nanoparticles synthesized by sol-gel method, Materials Today: Proceedings, 50, 2720–2724 (2022)

  42. H.K. Kim, L.T. Schelhas, S. Keller, J.L. Hockel, S.H. Tolbert, G.P. Carman, Magnetoelectric control of superparamagnetism. Nano Lett. 13, 884–888 (2013)

    Article  ADS  Google Scholar 

  43. M. Kooti, L. Matouri, Fabrication of nanosized cuprous oxide using fehling’s solution. Scientia Iranica. 17, 73–78 (2010)

    Google Scholar 

  44. D. Cui, Y. Li, K. Pan, J. Liu, Q. Wang, M. Liu, F. Yu, NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity. Front. Chem. Sci. Eng., 1–13 (2023)

  45. H.M. Alghamdi, M.M. Abutalib, A. Rajeh, M.A. Mannaa, O. Nur, E.M. Abdelrazek, Effect of the Fe2O3/TiO2 nanoparticles on the structural, mechanical, electrical properties and antibacterial activity of the biodegradable chitosan/polyvinyl alcohol blend for food packaging. J. Polym. Environ. 30, 3865–3874 (2022)

    Article  Google Scholar 

  46. M. Sołtys-Mróz, K. Syrek, Ł. Pięta, K. Malek, G.D. Sulka, Photoelectrochemical Performance of Nanotubular Fe2O3–TiO2 electrodes under Solar Radiation. Nanomaterials. 12, 1546 (2022)

    Article  Google Scholar 

  47. A. Younes, R. Amraoui, A. Manseri, F. Smaili, The impact of Cu, Ni and Fe2O3 on the magnetic behavior and structural properties of FeSiO2 nanocomposite synthesized through ball milling. Phys. Scr. 98, 115536 (2023)

    Article  ADS  Google Scholar 

  48. L. Lin, H. Wang, W. Jiang et al., Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J. Hazard. Mater. 333, 162–168 (2017)

    Article  Google Scholar 

  49. A. Realpe Jimenez, D. Nunez, N. Rojas, Y. Ramirez, M. Acevedo, Effect of Fe–N codoping on the optical properties of TiO2 for use in photoelectrolysis of water. ACS Omega. 6, 4932–4938 (2021)

    Article  Google Scholar 

  50. L. Seid, O. Belgherbi, A. Younes, H. Amar, D. Chouder, Synthesis and characterization of ferromagnetic polyaniline-cobalt chloride composite through in situ oxidative polymerization technique. J. Solid State Electrochem. 27, 2713–2725 (2023)

    Article  Google Scholar 

  51. A.I. Kokorin, R. Amal, W.Y. Teoh, A.I. Kulak, Studies of nanosized iron-doped TiO2 photocatalysts by spectroscopic methods. Appl. Magn. Reson. 48, 447–459 (2017)

    Article  Google Scholar 

  52. S. Sood, A. Umar, S.K. Mehta et al., Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J. Colloid Interface Sci. 450, 213–223 (2015)

    Article  ADS  Google Scholar 

  53. C. Lemire, S. Bertarione, A. Zecchina, D. Scarano, A. Chaka, S. Shaikhutdinov, H.J. Freund, C. Lemire et al., Ferryl (Fe = O) termination of the Hematite α – Fe2O3. Surf. Phys. Rev. Lett. 94(0001), 166101 (2005)

    Article  ADS  Google Scholar 

  54. M.A. Kumar, B. Abebe, H.P. Nagaswarupa, H.A. Murthy, C.R. Ravikumar, F.K. Sabir, Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: its applications in dye decolorization and as supercapacitors. Sci. Rep. 10, 1249 (2020)

    Article  ADS  Google Scholar 

  55. C.V. Tran, P.T.H. Nguyen, D.D. Nguyen, H.T. Pham, D.T. Do, D.D. La, Facile fabrication of Fe2O3/TiO2 composite from Titanium Slag as Adsorbent for as (V) removal from aqueous media. Sustainability. 15, 7253 (2023)

    Article  Google Scholar 

  56. E.T. Helmy, U.A. Soliman, A.M. Elbasiony, B.S. Nguyen, CuCe-Ferrite/TiO2 nanocomposite as an efficient magnetically Separable Photocatalyst for Dye pollutants Decolorization. Top. Catal. 66, 53–63 (2023)

    Article  Google Scholar 

  57. T. Raguram, K.S. Rajni, Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol–gel technique. Appl. Phys. A 125, 1–11 (2019)

    Article  Google Scholar 

  58. J. Joy, A. Krishnamoorthy, A. Tanna, V. Kamathe, R. Nagar, S. Srinivasan, Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Appl. Sci. 12, 9312 (2022)

    Article  Google Scholar 

  59. M.M. Ahmad, S. Mushtaq, H.S. Al Qahtani, A. Sedky, M.W. Alam, Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals. 11, 1456 (2021)

    Article  Google Scholar 

  60. C.R. Shyniya, K.A. Bhabu, T.R. Rajasekaran, Enhanced electrochemical behavior of novel acceptor doped titanium dioxide catalysts for photocatalytic applications. J. Mater. Sci.: Mater. Electron. 28, 6959–6970 (2017)

    Google Scholar 

  61. R. Huang, R. Liang, H. Fan, S. Ying, L. Wu, X. Wang, G. Yan, Enhanced photocatalytic fuel denitrification over TiO2/α-Fe2O3 nanocomposites under visible light irradiation. Sci. Rep. 7, 7858 (2017)

    Article  ADS  Google Scholar 

  62. R. Wang, X. Wang, X. Xi, R. Hu, G. Jiang, Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites, Adv. Mater. Sci. Eng.(2012)

  63. X.J. Yang, W.A.N.G. Shu, H.M. Sun, X.B. Wang, J.S. Lian, Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans. Nonferrous Met. Soc. China. 25, 504–509 (2015)

    Article  Google Scholar 

  64. X. Bao, J. Wang, X. Wu, C. He, H. Luo, Q. Bai, V. Bao, The symmetry aspect of magnetocaloric effect in LaxBi0.3-xCa0.7MnO3 manganites. Phys. B: Condens. Matter. 671, 415410 (2023)

    Article  Google Scholar 

  65. X. Zhou, X. Li, K. Lu, Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading. Phys. Rev. Lett. 122, 126101 (2019). https://doi.org/10.1103/PhysRevLett.122.126101

    Article  ADS  Google Scholar 

  66. B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and fedoped TiO2 nanoribbons. J. Phys. D Appl. Phys. 47(23), 235304 (2014)

    Article  ADS  Google Scholar 

  67. J.O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C.J. Tavares, V. Teixeira, Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J. Mater. Sci. 49(21), 7476–7488 (2014)

    Article  ADS  Google Scholar 

  68. R. Amade, P. Heitjans, S. Indris, M. Finger, A. Haeger, D. Hesse, Defect formation during high-energy ball milling in TiO2 and its relation to the photocatalytic activity. J. Photochem. Photobiol Chem. 207(2–3), 231–235 (2009)

    Article  Google Scholar 

  69. F. Tolea, M.N. Grecu, V. Kuncser, S.G. Constantinescu, D. Ghica, On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles. Appl. Phys. Lett. 106(14), 142404 (2015)

    Article  ADS  Google Scholar 

  70. S. Bhullar, N. Goyal, S. Gupta, Synthesizing and optimizing Rutile TiO2 nanoparticles for magnetically guided drug delivery. Int. J. Nanomed. 2022, 3147–3161 (2022)

    Article  Google Scholar 

  71. B. Santara, B. Pal, P.K. Giri, Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys. 110(11), 114322 (2011)

    Article  ADS  Google Scholar 

  72. E. Xie, L. Zheng, X. Li, Y. Wang, J. Dou, A. Ding, D. Zhang, One-step synthesis of magnetic-TiO2-nanocomposites with high iron oxide-composing ratio for photocatalysis of rhodamine 6G. Plos One 14, e0221221 (2019)

  73. F. Heidarinejad, H. Kamani, A. Khtibi, Magnetic Fe-doped TiO2@ Fe3O4 for metronidazole degradation in aqueous solutions: characteristics and efficacy assessment. Heliyon 9, (2023)

  74. W. Liu, W. Zhong, Y.W. Du, Magnetic nanoparticles with core/shell structures. J. Nanosci. Nanotechnol. 8(6), 2781–2792 (2008)

    Article  Google Scholar 

  75. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Article  Google Scholar 

  76. L. Yang, S. Han, X. Ma, W. Qin, S. Xie, Ferromagnetic mechanism in organic photovoltaic cells with closed-shell structures. Sci. Rep. 7, 8384 (2017)

    Article  ADS  Google Scholar 

  77. P. Kuivalainen, J. Sinkkonen, K. Kaski, T. Stubb, Bound magnetic polaron in magnetic semiconductors. Phys. Status Solidi (b). 94(1), 181–190 (1979). https://doi.org/10.1002/pssb.2220940119

    Article  ADS  Google Scholar 

  78. F. Ostovari, Coexistence of paramagnetism and ferromagnetism in Fe-TiO2 nanoparticle. Chin. J. Phys. 56(1), 86–90 (2018)

    Article  Google Scholar 

  79. M. Abbas, B. Parvatheeswara Rao, V. Reddy, C. Kim, Fe3O4/TiO2 core/shell nanocubes: single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40, 11177–11186 (2014)

    Article  Google Scholar 

  80. E. Norabadi, A. Jahantiq, H. Kamani, Synthesis of Fe-TiO2@ Fe3O4 magnetic nanoparticles as a recyclable sonocatalyst for the degradation of 2, 4-dichlorophenol. Environ. Sci. Pollut. Res. 30, 31446–31460 (2023)

    Article  Google Scholar 

  81. T.A. Hameed, A.A. Azab, R.S. Ibrahim, K.E. Rady, Optimization, structural, optical and magnetic properties of TiO2/CoFe2O4 nanocomposites. Ceram. Int. 48, 20418–20425 (2022)

    Article  Google Scholar 

  82. H. Zhang, Y. Wang, W. Zhong, B. Long, Y. Wu, Z. Xie, Tailoring the room temperature ferromagnetism in TiO2 nanoparticles by modulating the concentration of surface oxygen vacancy via La incorporating. Ceram. Int. 45(10), 12949–12956 (2019)

    Article  Google Scholar 

  83. J. Sort, S. Suriñach, J.S. Muñoz, M.D. Baró, J. Nogués, G. Chouteau, G.C. Hadjipanayis, Improving the energy product of hard magnetic materials. Phys. Rev. B 65, 174420 (2002)

    Article  ADS  Google Scholar 

  84. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, Y. Osada, Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91, 5246–5249 (2002)

    Article  ADS  Google Scholar 

  85. N. Rani, B.S. Dehiya, Magnetic core-shell Fe3O4@ TiO2 nanocomposites for broad spectrum antibacterial applications. IET Nanobiotechnol. 15, 301–308 (2021)

    Article  Google Scholar 

Download references

Funding

The authors assert that no financial support, grants, or other forms of assistance were obtained during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Younes.

Ethics declarations

Conflict of interest

The authors declare the absence of any pertinent financial or non-financial interests that could potentially influence the content disclosed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, A., Amraoui, R., Amar, H. et al. Impact of Cu, Fe2O3, and Cu/Fe2O3 on the magnetic and structural characteristics of FeTiO2 nanocomposite synthesized through mechanical alloying processes. Appl. Phys. A 130, 407 (2024). https://doi.org/10.1007/s00339-024-07570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07570-z

Keywords

Navigation