Skip to main content
Log in

Magnetic and structural properties of nanostructured FeSn, FeSnTi, FeSnV and FeSnTiV alloys elaborated via ball milling process

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study investigates the impact of Ti and V additions on the magnetic properties of nanostructured Fe–Sn alloys synthesized via a ball milling process. The structural properties, morphological features, and magnetic behavior of the resulting nanostructured materials were analyzed using various characterization techniques, including scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and vibrating sample magnetometer. After subjecting the samples to a grinding time of 10 h, XRD analysis revealed the presence of characteristic peaks corresponding to FeSn phase. The average crystallite size ranged from 51 to 18 nm, while the lattice strain was measured between 0.184% and 0.259%. Interestingly, the grinding process led to an increase in coercivity, remanence magnetization, and squareness of the nanostructured FeSn samples, accompanied by a decrease in saturation magnetization. In the case of the nanostructured FeSnTiV samples, the addition of Ti or V to FeSn resulted in a reduction in saturation magnetization. Conversely, when both Ti and V were added, the saturation magnetization increased. However, the inclusion of Ti, V, or Ti-V compounds resulted in a decrease in coercivity, remanence magnetization, and squareness of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Rempel, Nanotechnologies. Properties and applications of nanostructured materials. Russian Chem. Rev. 76(5), 435 (2007)

    Article  ADS  Google Scholar 

  2. Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Mater. 51(8), 825–830 (2004)

    Article  Google Scholar 

  3. P. Matteazzi, G. Le Caër, A. Mocellin, Synthesis of nanostructured materials by mechanical alloying. Ceram. Int. 23(1), 39–44 (1997)

    Article  Google Scholar 

  4. G. Guisbiers, S. Mejía-Rosales, F.L. Deepak, Nanomaterial properties: size and shape dependencies. J. Nanomater. 2012, 20–20 (2012)

    Article  Google Scholar 

  5. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  Google Scholar 

  6. G.D. Moon, S. Ko, Y. Min, J. Zeng, Y. Xia, U. Jeong, Chemical transformations of nanostructured materials. Nano Today 6(2), 186–203 (2011)

    Article  Google Scholar 

  7. J.W. Park, C.M. Park, Nanostructured FeSn2/SnO2-based composites as high-performance anodes for lithium-ion batteries. J. Alloy. Compd. 803, 80–87 (2019)

    Article  Google Scholar 

  8. M. Han, H. Inoue, S. Fang, C. John, L. Ye, M.K. Chan, J.G. Checkelsky, Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12(1), 5345 (2021)

    Article  ADS  Google Scholar 

  9. D. Multer, J.X. Yin, M.S. Hossain, X. Yang, B.C. Sales, H. Miao, M. Zahid Hasan, Imaging real-space flat band localization in kagome magnet FeSn. Commun. Mater. 4(1), 17 (2023)

    Article  Google Scholar 

  10. G.A. Dorofeev, E.P. Elsukov, Thermodynamic modeling of mechanical alloying in the Fe–Sn system. Inorg. Mater. 36, 1228–1234 (2000)

    Article  Google Scholar 

  11. H. Gong, M. Qing, H. Wan, X. Yuan, P. Qiao, X. Liu, Y.W. Li, Fe-Sn bimetallic catalysts for an enhanced Fischer-Tropsch synthesis stability via oxygen removal and coking resistance. Fuel 311, 122115 (2022)

    Article  Google Scholar 

  12. M. Yin, P. Nash, J.A. Kaduk, J.C. Schuster, Experimental investigation of the Fe-Sn-Ti ternary isothermal section at 873 K. J. Alloy. Compd. 693, 76–86 (2017)

    Article  Google Scholar 

  13. Y. Liang, C. Wang, N. Liu, J. Zhang, New Ti-Fe-Sn-Y alloys designed for laser direct energy deposition. Mater. Charact. 187, 111866 (2022)

    Article  Google Scholar 

  14. A.K. Pandey, P. Alvaredo, S. Milenkovic, F. Sket, Development of powders of Ti-Fe-Sn ultrafine eutectics for laser additive manufacturing. Powder Technol. 404, 117416 (2022)

    Article  Google Scholar 

  15. Y. Han, S. Zhang, R. Bai, H. Zhou, Z. Su, J. Wu, J. Wang, Effect of nano-vanadium nitride on microstructure and properties of sintered Fe-Cu-based diamond composites. Int. J. Refract Metal Hard Mater. 91, 105256 (2020)

    Article  Google Scholar 

  16. Y. Zhang, W. Wang, Z. Li, G. Huang, H. Zhang, F. Liu, Study of the brittleness mechanism of aluminum/steel laser welded joints with copper and vanadium interlayers. Opt. Laser Technol. 163, 109319 (2023)

    Article  Google Scholar 

  17. B. Fayyazi, K.P. Skokov, T. Faske, D.Y. Karpenkov, W. Donner, O. Gutfleisch, Bulk combinatorial analysis for searching new rare-earth free permanent magnets: Reactive crucible melting applied to the Fe-Sn binary system. Acta Mater. 141, 434–443 (2017)

    Article  ADS  Google Scholar 

  18. B. Fayyazi, K.P. Skokov, T. Faske et al., Experimental and computational analysis of binary Fe-Sn ferromagnetic compounds. Acta Mater. 180, 126–140 (2019)

    Article  ADS  Google Scholar 

  19. H. Giefers, M. Nicol, High pressure X-ray diffraction study of all Fe–Sn intermetallic compounds and one Fe–Sn solid solution. J. Alloy. Compd. 422(1–2), 132–144 (2006)

    Article  Google Scholar 

  20. Y.S. Kwon, K.B. Gerasimov, S.S. Avramchucka, Decomposition of FeSn intermetallic induced by mechanical milling. J Alloys Compd 359, 79–83 (2003)

    Article  Google Scholar 

  21. E.P. Elsukov, I.V. Povstugar, Deformation-Induced Dissolution of the Intermetallic Compound FeSn in Nanocrystalline a-Fe. Phys. Metals Metallography 107(1), 80–89 (2009)

    Article  ADS  Google Scholar 

  22. J. Wang, W. Zou, Z. Lu, Z. Lu, X. Liu, J. Xu, Y. Du, Anomalous Hall effect and magnetoresistance of (FexSn1− x) 1− y (SiO2) y films. J. Phys. D Appl. Phys. 40(8), 2425 (2007)

    Article  ADS  Google Scholar 

  23. E.P. Yelsukov, E.V. Voronina, G.N. Konygin, V.A. Barinov, S.K. Godovikov, G.A. Dorofeev, A.V. Zagainov, Structure and magnetic properties of Fe100-xSnx (3.2<x<62) alloys obtained by mechanical milling. J. Magnet. Magnet. Mater. 166(3), 334–348 (1997)

    Article  ADS  Google Scholar 

  24. Y. Cai, Y. Wu, Z.Y. Xie, H.S. Liu, Z.P. Jin, Phase equilibria in Fe–Sn–Ti ternary system at 1073 K and 1273 K. Calphad 49, 110–119 (2015)

    Article  Google Scholar 

  25. A. Novitskii, I. Serhiienko, A. Nepapushev, A. Ivanova, T. Sviridova, D. Moskovskikh, V. Khovaylo, Mechanochemical synthesis and thermoelectric properties of TiFe2Sn Heusler alloy. Intermetallics 133, 107195 (2021)

    Article  Google Scholar 

  26. B.F.O. Costa, G. Le Caër, B. Malaman, Evolution of a FeV sigma phase ball-milled in a mixture of argon and air. Hyperfine Interact. 183, 67–73 (2008)

    Article  ADS  Google Scholar 

  27. A. Abada, S. Bergheul, A. Younes, Mechanical and structural behaviour of TiAlV nanocrystalline elaborated by mechanical milling technique. Micro Nano Lett. 15(14), 1023–1027 (2020)

    Article  Google Scholar 

  28. N. Metidji, N.E. Bacha, A. Younes, D. Saidi, The effect of Ti addition on microstructure and magnetic properties of nanocrystalline FeAl 40 alloy powders prepared by mechanical alloying. Powder Metall. Met. Ceram. 59, 160–170 (2020)

    Article  Google Scholar 

  29. W.F. Ehret, A.F. Westgren, X-ray analysis of iron-tin alloys. J. Am. Chem. Soc. 55, 1339 (1933)

    Article  Google Scholar 

  30. A. Younes, M. Khorchef, A. Bouamer, H. Amar, Magnetic and structural behavior of Fe-CoO nanocomposites mechanically milled. In IOP Conference Series: Materials Science and Engineering 557, No. 1, p. 012064). IOP publishing

  31. X. Zhang, J. Liu, Y. Qiao, A. Kong, R. Li, Y. Shan, Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries. Electrochim. Acta 320, 134593 (2019)

    Article  Google Scholar 

  32. Y.E. Lim, W.S. Choi, J.H. Kim, Y.N. Ahn, I.T. Kim, The Sn–red P-Fe–based alloy materials for efficient Li–ion battery anodes. J. Indust. Eng. Chem. (2023). https://doi.org/10.1016/j.jiec.2023.01.033

    Article  Google Scholar 

  33. G. Trumpy, E. Both, C. Djega-Mariadassou, P. Lecocq, Mossbauer-effect studies of iron-tin alloys. Phys. Rev. B 2(9), 3477 (1970)

    Article  ADS  Google Scholar 

  34. G. Venturini, B. Malaman, G. Le Caër, D. Fruchart, Low-temperature magnetic structure of FeSn 2. Phys. Rev. B 35(13), 7038 (1987)

    Article  ADS  Google Scholar 

  35. A.P. Vokhmyanin, Symmetry analysis of the magnetic structures of alloys of the quasi-binary system Fe x Mn 1–x Sn 2. Phys. Met. Metallogr. 107, 115–122 (2009)

    Article  ADS  Google Scholar 

  36. E. P. Yelsukov, E. V. Voronina, G.N. Konygin, S. K Godovikov, V. M. Fomin, Disordered Nanocrystalline Fe-Sn Alloys: 57Fe and 119Sn Mössbauer Spectroscopy Study. In Mössbauer Spectroscopy in Materials Science (Springer Netherlands, Dordrecht, 1999), pp. 283–290

  37. B.C. Sales, J. Yan, W.R. Meier, A.D. Christianson, S. Okamoto, M.A. McGuire, Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev Mater. 3(11), 114203 (2019)

    Article  Google Scholar 

  38. N. Nakayama, K. Kosuge, S. Kachi, T. Shinjo, T. Takada, Magnetic properties of FeSn (OH) 6 and its oxidation product, FeSnO (OH) 5. Mater. Res. Bull. 13(1), 17–22 (1978)

    Article  Google Scholar 

  39. K. Brzakalik, Structural and Magnetic Properties οf Fe3-xTixSn Disordered Alloys. Acta Phys. Pol. A 114(6), 1529–1536 (2008)

    Article  ADS  Google Scholar 

  40. O. Hartmann, R. Wäppling, Muon spin precession in the hexagonal antiferromagnet FeSn. Phys. Scr. 35(4), 499 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Younes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abada, A., Younes, A. & Manseri, A. Magnetic and structural properties of nanostructured FeSn, FeSnTi, FeSnV and FeSnTiV alloys elaborated via ball milling process. J. Korean Phys. Soc. 84, 33–43 (2024). https://doi.org/10.1007/s40042-023-00947-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00947-y

Keywords

Navigation