Skip to main content
Log in

Enhancing dielectric properties and thermal stability in microwave-synthesized Nd-modified barium titanate nanoceramics for possible MLCC applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In pursuing enhanced performance for electronic applications, we synthesized ferroelectric materials, specifically Ba(1-x)Nd2x/3TiO3 (BNdTx) nanoceramics, utilizing solid-state reaction techniques coupled with microwave heating treatment. Our investigation involved varying Nd3+-doping levels (x = 0%, 2%, 4%, and 8%) to tailor the material's properties. XRD analysis confirmed the presence of a single-phase tetragonal perovskite structure (space group P4mm). A comprehensive examination of the partial density of states for both undoped and Nd3+-doped BaTiO3 was undertaken to discern the impact of Nd3+-doping on the energy bands. Microscopic analysis revealed the presence of pores in the samples, accompanied by a reduction in grain size with increasing Nd3+ content. The introduction of Nd3+ induced a shift in the Curie temperature (TC) towards room temperature. Simultaneously, the dielectric characteristics exhibited a consistent value above 1900, with a low loss of less than 5% observed across a range of temperatures (30–100 °C). Notably, the sample with x = 4% demonstrated thermally stable dielectric properties, suggesting its potential suitability as a material for Multilayer Ceramic Capacitor (MLCC) applications.

Graphical abstract

Integrating microwave sintering and ball milling techniques is a significant development in advanced materials engineering, specifically in producing Multi-Layer Ceramic Capacitors (MLCC). The practical implementation of these novel methodologies is essential in decreasing particle size, which is a critical determinant in improving thermal stability. Ball milling further refines the particle size distribution, whereas microwave sintering guarantees a more uniform and fine-grained microstructure through its rapid and effective heating capabilities. The capacitors acquire enhanced thermal stability and a more refined material granularity through this synergistic combination. By achieving a more uniform and compact ceramic structure, these processes result in a finer particle size, enhancing the overall performance and dependability of MLCC capacitors. The increasing need for miniaturized and high-performance electronic components has focused on utilizing microwave sintering and ball milling. These processes are at the forefront of technological advancements in the pursuit of improved thermal properties and increased efficiency in manufacturing MLCC capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used in this article is confidential and analyzed in this manuscript.

References

  1. K. Laadjal, A.J.M. Cardoso, Electronics 12(6), 1297 (2023)

    Article  Google Scholar 

  2. J. Chun, J. Heo, K.S. Lee, B.U. Ye, B.S. Kang, S.-H. Yoon, Sci. Rep. 14, 616 (2024)

    Article  ADS  Google Scholar 

  3. M. Feng, Yu. Feng, T. Zhang, J. Li, Q. Chen, Q. Chi, Q. Lei, Adv. Sci. 8(23), 2102221 (2021)

    Article  Google Scholar 

  4. D. Shi, D. Liu, L. Zhao, Qi. Wang, T. Tang, X. Long, L. Yan, B.-P. Zhang, He. Qi, L.-F. Zhu, Chem. Eng. J. 479, 147672 (2024)

    Article  Google Scholar 

  5. Z. Lv, T. Lu, Z. Liu, T. Hu, Z. Hong, S. Guo, Z. Xu et al., Adv. Energy Mater. 2304291 (2024)

  6. W. Dutta, C. Reece, A. Mallik, IET Power Electron. (2023). https://doi.org/10.1049/pel2.12608

    Article  Google Scholar 

  7. J. Torki, C. Joubert, A. Sari, J. Energy Storage 58, 106330 (2023)

    Article  Google Scholar 

  8. P. Yousefian, A. Sepehrinezhad, A.C.T. van Duin, C.A. Randall, APL Mach. Learn. 1, 036107 (2023)

    Article  Google Scholar 

  9. Y. Xiao, Y. Yang, S. Yang, J. Li, D. Liu, Wu. Jie, M. Wang, C. Li, F. Li, Int. J. Appl. Ceram. 20(6), 3735–3742 (2023)

    Article  Google Scholar 

  10. P. Zan, Y. Long, Pu. Linyu, Xu. Huang, J. Liu, J. Mater. Sci. Mater. Electron. 35, 23 (2024)

    Article  Google Scholar 

  11. Y. Wang, Z. Peng, J. Wang, J. Liu, B. Chen, Q. Chai, S. Dang, Z. Zhai, P. Liang, X. Chao, Z. Yang, Ceram. Int. 50(9), 15569–15576 (2024)

    Article  Google Scholar 

  12. W.H. Lee, C.Y. Su, J. Am. Ceram. Soc. 90, 3345–3348 (2007)

    Article  Google Scholar 

  13. Y. Wang, K. Miao, W. Wang, Y. Qin, J. Eur. Ceram. Soc. 37(6), 2385–2390 (2017)

    Article  Google Scholar 

  14. C.H. Kim, K.J. Park, Y.J. Yoon, M.H. Hong, J.O. Hong, K.H. Hur, J. Eur. Ceram. Soc. 28, 1213–1219 (2008)

    Article  Google Scholar 

  15. S. Sumithra, K. Annapoorani, A. Ellmore, B. Vaidhyanathan, Open Ceram. 9, 100214 (2022)

    Article  Google Scholar 

  16. T. Fan, C. Ji, G. Chen, W. Cai, R. Gao, X. Deng, Z. Wang, C. Fu, Mater. Chem. Phys. 250, 123034 (2020)

    Article  Google Scholar 

  17. W. Hu, Z. Chen, Z. Lu, X. Wang, X. Fu, Ceram. Int. 47(17), 24982–24987 (2021)

    Article  Google Scholar 

  18. H.S. Yun, B.G. Yun, H.M. Lee et al., SN Appl. Sci. 1, 1366 (2019)

    Article  Google Scholar 

  19. L. Chen, H. Wang, P. Zhao, Z. Shen, C. Zhu, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102(5), 2781–2790 (2019)

    Article  Google Scholar 

  20. S. Sato, Y. Nakano, A. Sato, T. Nomura, J. Eur. Ceram. Soc. 19(6–7), 1061–1065 (1999)

    Article  Google Scholar 

  21. L. Li, J. Yu, Y. Liu, N. Zhang, J. Chen, Ceram. Int. 41(7), 8696–8701 (2015)

    Article  Google Scholar 

  22. M. Wang, K. Xue, K. Zhang, L. Li, Ceram. Int. 48(15), 22212–22220 (2022)

    Article  Google Scholar 

  23. Y. Wang, B. Cui, Y. Liu, X. Zhao, Z. Hu, Q. Yan, T. Wu, L. Zhao, Y. Wang, Scr. Mater. 90–91, 49–52 (2014)

    Article  Google Scholar 

  24. F.D. Morrison, D.C. Sinclair, A.R. Int, J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  Google Scholar 

  25. M. Ganguly, S. Rout, T. Sinha, S. Sharma, H. Park, C. Ahn, I. Kim, J. Alloys Compd. 579, 473–484 (2013)

    Article  Google Scholar 

  26. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475–481 (2008)

    Article  Google Scholar 

  27. A.S. Shaikh, R.W. Vest, J. Am. Ceram. Soc. 69, 689–694 (1986)

    Article  Google Scholar 

  28. T.R.N. Kutty, P. Murugaraj, J. Mater. Sci. 22, 3652–3664 (1987)

    Article  ADS  Google Scholar 

  29. S.B. Desu, D.A. Payne, J. Am. Ceram. Soc. 73, 3407–3415 (1990)

    Article  Google Scholar 

  30. M.H. Aleinawi, A.U. Ammar, M. Buldu-Akturk, N.S. Turhan, S. Nadupalli, E. Erdem, J. Phys. Chem. C 126(8), 4229–4240 (2022)

    Article  Google Scholar 

  31. S. Mahboob, A. Dutta, C. Prakash, G. Swaminathan, S. Suryanarayana, G. Prasad, G. Kumar, Mater. Sci. Eng. B 134(1), 36–40 (2006)

    Article  Google Scholar 

  32. S. Mahboob, G.R. Prasad et al., Bull. Mater. Sci. 42, 30 (2019)

    Article  Google Scholar 

  33. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, J. Am. Ceram. Soc. 84(2), 376–384 (2001)

    Article  Google Scholar 

  34. J. Gardner, F.D. Morrison, Dalton Trans. 43, 11687–11695 (2014)

    Article  Google Scholar 

  35. Z. Yu, C. Ang, R. Guo, Mater. Lett. 61, 326 (2007)

    Article  Google Scholar 

  36. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, J. Mater. Sci. Mater. Electron. 27, 3175–3181 (2016)

    Article  Google Scholar 

  37. M. Tihtih, J.E.F.M. Ibrahim, E. Kurovics, L.A. Gömze, Cryst. Res. Technol. 57, 2100106 (2022)

    Article  Google Scholar 

  38. M. Tihtih et al., ACS Omega 8, 8448–8460 (2023)

    Article  Google Scholar 

  39. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 045013 (2019)

    Article  ADS  Google Scholar 

  40. G. Schiller, L. Huisman, A. Ferreira, M. Deluca, K. Reichmann, Structure-property relationships in BaTiO3-BiFeO3–BiYbO3 ceramics. J. Eur. Ceram. Soc. 33, 1457–1468 (2013)

    Article  Google Scholar 

  41. F. Maxim, P. Ferreira, P.M. Vilarinho, I. Reaney, Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors Cryst. Growth Des 8(9), 3309–3315 (2008)

    Article  Google Scholar 

  42. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 Part I-isolated particles and aggregates. J. Raman Spectrosc. 38(10), 1288–1299 (2007)

    Article  ADS  Google Scholar 

  43. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 Part II-consolidated polycrystalline ceramics. J. Raman Spectrosc. 38, 1300–1306 (2007)

    Article  ADS  Google Scholar 

  44. V. Pal, O.P. Thakur, R.K. Dwivedi, Investigation of MPB region in lead-free BLNT-BCT system through XRD and Raman spectroscopy. J. Phys. D Appl. Phys. 48, 05530 (2015)

    Article  Google Scholar 

  45. J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, G. Lucazeau, J. Phys. Condens. Matter 12, 3267 (2000)

    Article  ADS  Google Scholar 

  46. J. Kreisel, A.M. Glazer, P. Bouvier, G. Lucazeau, High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.63.174106

    Article  Google Scholar 

  47. M.S. Alkathy, M.H. Lente, J. Eiras, Mater. Chem. Phys. 257, 123791 (2021)

    Article  Google Scholar 

  48. S. Sasikumar, T.K. Thirumalaisamy, S. Saravanakumar et al., J. Mater. Sci. Mater. Electron. 31, 1535–1546 (2020)

    Article  Google Scholar 

  49. R.D. Shannon, Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  50. C.C. Parhi et al., ACS Omega 8(41), 37752–37768 (2023)

    Article  Google Scholar 

  51. M. Saleem, M.S. Butt, A. Maqbool, M.A. Umer, M. Shahid, F. Javaid, R.A. Malik, H. Jabbar, H.M. Waseem Khalil, L.D. Hwan, M. Kim, B. Koo, S. Jeong, J. J. Alloys Compd. 822, 153525 (2020)

    Article  Google Scholar 

  52. M. Mostafa, M.J. Rahman, S. Choudhury, Sci. Eng. Compos. Mater. 26(1), 62–69 (2019)

    Article  Google Scholar 

  53. A. Semenov et al., Materials 12(21), 3592 (2019)

    Article  ADS  Google Scholar 

  54. K. Manfred, J. Am. Ceram. Soc. 54, 455 (1971)

    Article  Google Scholar 

  55. T.M. Harkulich, J. Magder, M.S. Vukasovich, R.J. Lockhart, J. Am. Ceram. Soc. 49(6), 295 (1966)

    Article  Google Scholar 

  56. A. Yamaji, Y. Enomoto, K. Kinoshita, T. Mrakami, J. Am. Ceram. Soc. 60, 97 (1977)

    Article  Google Scholar 

  57. M. Kahn, J. Am. Ceram. Soc. 54, 452 (1971)

    Article  Google Scholar 

  58. D.A. Payne, H.U. Anderson, J. Am. Ceram. Soc. 50, 491 (1967)

    Article  Google Scholar 

  59. A.C. Caballero, J.C. Fernandez, C. Moure, P. Duran, J. Eur. Ceram. Soc. 17, 513 (1997)

    Article  Google Scholar 

  60. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)

    Article  ADS  Google Scholar 

  61. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966)

    Article  Google Scholar 

  62. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 36 (1966)

    Article  Google Scholar 

  63. A.J. Bell, A.J. Moulson, L.E. Cross, Ferroelectrics 54, 147 (1984)

    Article  ADS  Google Scholar 

  64. M.S. Alkathy, J.A. Eiras, F.L. Zabotto et al., J. Mater. Sci. Mater. Electron. 32, 12828–12840 (2021)

    Article  Google Scholar 

  65. S. Hu, C. Luo, P. Li et al., J. Mater. Sci. Mater. Electron. 28, 9322–9327 (2017)

    Article  Google Scholar 

  66. B. Sandeep, K.R. Kambale, A. Ghorpade, A. Halikar, R. Gaikwad, H. Panda, J. Asian Ceram. Soc. 7(4), 407–416 (2019)

    Article  Google Scholar 

  67. Q. Yin, B. Zhu, H. Zeng, Microstructure Property and Processing of Functional Ceramics (Springer, Berlin, 2010)

    Book  Google Scholar 

  68. Y. Park, W.-J. Lee, H.-G. Kim, J. Condens. Matter Phys 9(43), 9445 (1997)

    Article  ADS  Google Scholar 

  69. Y. Park et al., J. Phys. 9, 9445 (1997)

    Google Scholar 

  70. K. Keizer, A.J. Burggraaf, Phys. Status Solidi A 3, 561 (1974)

    Article  ADS  Google Scholar 

  71. Z. Zhao, V. Buscaglia, M. Viviani et al., Phys. Rev. B 70, 024107 (2004)

    Article  ADS  Google Scholar 

  72. W. Hu, X. Tan, K. Rajan, J. Eur. Ceram. Soc. 31, 801–807 (2011)

    Article  Google Scholar 

  73. R.E. Eitel, C.A. Randall, T.R. Shrout et al., Jpn. J. Appl. Phys. 40, 5999–6002 (2001)

    Article  ADS  Google Scholar 

  74. T. Leist, T. Granzow, W. Jo, J. Rödel, J. Appl. Phys. 108, 014103 (2010)

    Article  ADS  Google Scholar 

  75. M.S. Alkathy, K.C. JamesRaju, J. Electroceram. 38, 63–73 (2017)

    Article  Google Scholar 

  76. Z. Li, J. Yu, S. Hao, P. Janolin, J. Eur. Ceram. Soc. 42(12), 4693–4701 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.023

    Article  Google Scholar 

  77. V.F. Michel, T. Esswein, N.A. Spaldin, J. Mater. Chem. C 9(27), 8640–8649 (2021)

    Article  Google Scholar 

  78. C. Ludt, D.C. Meyer, M. Zschornak, Materials 17(5), 1023 (2024)

    Article  Google Scholar 

  79. A. Rani, J. Kolte, P. Gopalan, Ceram. Int. 41(10), 14057–14063 (2015)

    Article  Google Scholar 

  80. X. Guo, Y. Sun, L. Liu, Z. Yu, J. Liu, Int. J. Appl. Ceram. (2024). https://doi.org/10.1111/ijac.14666

    Article  Google Scholar 

  81. H. Wu, W. Cai, Z. Liu, D. Chen, R. Gao, G. Chen, X. Deng, Z. Wang, X. Lei, C. Fu, Ceram. Int. 50(4), 6845–6853 (2024)

    Article  Google Scholar 

  82. A. Thakre, A. Kumar, M.-Y. Lee, D.R. Patil, S.-H. Kim, J. Ryu, J. Mater. Chem. C 9(10), 3403–3411 (2021)

    Article  Google Scholar 

  83. A. Kumar, S.R. Emani, K.C. James Raju, J. Ryu, A.R. James, Energies 13(23), 6457 (2020)

    Article  Google Scholar 

  84. V. Polinger, P. Garcia-Fernandez, I. Bersuker, Phys. B Condens. Matter. 457, 296–309 (2015)

    Article  ADS  Google Scholar 

  85. B.W. Zhou, J. Zhang, X.B. Ye, G.X. Liu, X. Xu, J. Wang, Z.H. Liu et al., Phys. Rev. Lett.. Lett. 130, 146101 (2023)

    Article  ADS  Google Scholar 

  86. Y. Zhou, S. Dong, C. Shan, K. Ji, J. Zhang, Phys. Rev. B 105, 075408 (2022)

    Article  ADS  Google Scholar 

  87. S.Y. Chen, R. Liu, Y.P. Zheng, Y.J. Shi, S.T. Dang, Y.C. Shi, F. Yang et al., J. Alloys Compd. 936, 168015 (2023)

    Article  Google Scholar 

  88. P. Bhatt, A. Kumar, C. Ritter, S.M. Yusuf, J. Phys. Chem. C 124, 19228–19239 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude for the financial support provided by the Sao Paulo Research Foundation (FAPESP: Grant no. 2017/13769-1) and (FAPESP: Grant no. 2023/05716-6). Dr. Mansor thanks the researchers supporting project number (RSP2024R393) at King Saud University in Riyadh, Saudi Arabia, for his financial support. Prof. K.C James Raju acknowledges the funds received from the Institution of Eminence (IoE) program under sanction number UoH/IoE/RC1/RC1-20-013.

Author information

Authors and Affiliations

Authors

Contributions

Mahmoud Alkathy: Writing, Correction, formal analysis, and original draft preparation. Flavio Paulo Milton: investigator. Mansour K. Gatasheh: Resources. Fabio Zabotto: Investigator. H. A. Kassim: Synthetization, Methodology, SEM measurements, and Formal Analysis. Prof. James Raju: Supervise and correct the original draft. Prof Jose Eiras: Correctional, supervision, and approval of the final version.

Corresponding author

Correspondence to Mahmoud S. Alkathy.

Ethics declarations

Conflict of interest

The authors confirm no conflict of interest or competing interest in this work.

Ethical statement

This article contains no studies with human participants or animals performed by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Milton, F.P., Gatasheh, M.K. et al. Enhancing dielectric properties and thermal stability in microwave-synthesized Nd-modified barium titanate nanoceramics for possible MLCC applications. Appl. Phys. A 130, 402 (2024). https://doi.org/10.1007/s00339-024-07566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07566-9

Keywords

Navigation