Skip to main content
Log in

Size-dependent thermal properties and sintering behaviors of silver nanoparticles: insights from molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver nanoparticles are widely utilized in printed electronics for forming conductive lines due to their exceptional electrical conductivity, resistance to oxidation, and mechanical reliability. Molecular dynamics simulations are employed to monitor real-time sintering behavior at the atomic scale. This feat is challenging to achieve through experimental means. Thermal properties, including melting points and sintering behaviors, are theoretically characterized across a range of particle sizes (from 3 nm to 20 nm). This study analyzes the melting behavior of multi-sized silver nanoparticles and simulates the structural evolution and morphology changes during the sintering process. The simulations reveal noteworthy phenomena, such as variations in melting points, gyration radii, and mean square displacements based on different particle sizes. Additionally, an optimal sintering temperature is determined through shrinkage coefficient calculations. These simulation outcomes shed light on phenomena at the atomic level, presenting a theoretical foundation for optimizing conductive ink formulation and refining sintering conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data forming the basis of this study are available from the authors upon reasonable request.

References

  1. S. Jiang, M. Rahman, Influence of sintering environments on the formation of silver nanoparticle patterns for use in flexible electronics. Appl. Phys. A 127, 769 (2021)

    Article  ADS  Google Scholar 

  2. S. Zhang, Y. Liu, J. Hao, G.G. Wallace, S. Beirne, J. Chen, 3D-printed wearable electrochemical energy devices. Adv. Funct. Mater. 32, 2103092 (2022)

    Article  Google Scholar 

  3. X. Li, K. Yang, Z. Yuan et al., Development and characteristics of a superhydrophobic coating on printed circuit boards (PCB). Appl. Phys. A 129, 398 (2023)

    Article  ADS  Google Scholar 

  4. J. Persad, S. Rocke, A survey of 3D printing technologies as applied to printed electronics. IEEE Access. 10, 27289–27319 (2022)

    Article  Google Scholar 

  5. S.L. Stupar, M.M. Vuksanović, D. Mijin, M.M. Bučko, V.J. Joksimović, T.S. Barudžija, Functional nano-silver decorated textiles for wearable electronics and electromagnetic interference shielding. Mater. Today Commun. 34, 105312 (2023)

    Article  Google Scholar 

  6. A. Bandyopadhyay, B. Heer, Additive manufacturing of multi-material structures. Mater. Sci. Eng. R: Rep. 129, 1–16 (2018)

    Article  Google Scholar 

  7. U. Das, R. Hoque, R. Biswas, Biosynthesized silver nanoparticles as an effective colorimetric sensor for melamine detection. Appl. Phys. A 129, 328 (2023)

    Article  ADS  Google Scholar 

  8. N. Ibrahim, J.O. Akindoyo, M. Mariatti, Recent development in silver-based ink for flexible electronics. J. Sci. : Adv. Mater. Dev. 7, 100395 (2021)

    Google Scholar 

  9. A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Comp. Part. B: Eng. 225, 109249 (2021)

    Article  Google Scholar 

  10. A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog Addit. Manuf. 4, 245–267 (2019)

    Article  Google Scholar 

  11. S. Jiang, M. Rahman, Impact of sintering atmospheres on printed silver nanoparticle patterns for flexible electronics application. Appl. Phys. A 127, 769 (2021)

    Article  ADS  Google Scholar 

  12. Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Recent progress of direct ink writing of electronic components for advanced wearable devices, ACS Appl. Electron. Mater. 1, 1718–1734 (2019)

    Google Scholar 

  13. R. Fang, L. Guo, W. Wang, C. Hou, H. Li, Atomic-scale simulation of nanojoining of Cu-Ag core-shell nanowires. Phys. Lett. A 405, 127425 (2021)

    Article  Google Scholar 

  14. S.M. Rassoulinejad-Mousavi, Y. Zhang, Interatomic potentials transferability for molecular simulations: a comparative study for platinum, gold and silver. Sci. Rep. 8, 2424 (2018)

    Article  ADS  Google Scholar 

  15. Q. Mao, Y. Ren, K.H. Luo, S. Li, Sintering-induced phase transformation of nanoparticles: a molecular dynamics study. J. Phys. Chem. C 119, 28631–28639 (2015)

    Article  Google Scholar 

  16. H. A. Alarifi, M. Atis, Ouml, Zdo Gbreve, C. An, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface pre-melting of silver nanoparticles. Mater. Trans. 54(6), 884–889 (2013)

    Article  Google Scholar 

  17. D. Hu, T.J. Gu, Z. Cui, S. Vollebregt, X.J. Fan, G.Q. Zhang, J.J. Fan, Insights into the high-sulphur aging of sintered silver nanoparticles: an experimental and ReaxFF study. Corros. Sci. 192, 109846 (2021)

    Article  Google Scholar 

  18. Y.N. Hu, Y.X. Wang, Y. Yao, Molecular dynamics on the sintering mechanism and mechanical feature of the silver nanoparticles at different temperatures. Mater. Today Commun. 34, 105292 (2023)

    Article  Google Scholar 

  19. P.J. Liang, Z.L. Pan, L. Tang, G.Q. Zhang, D.G. Yang, S.L. He, H.D. Yan, Molecular dynamics simulation of sintering densification of multi-scale silver layer. Materials. 15(6), 2232 (2022)

    Article  ADS  Google Scholar 

  20. C.C. Jiang, Y.J. Mo, H. Wang, R.H. Li, M. Huang, S.J. Jiang, Molecular dynamics simulation of the production of hollow silver nanoparticles under ultrafast laser irradiation. Comp. Mater. Sci. 196, 110545 (2021)

    Article  Google Scholar 

  21. M.M. Blazhynska, A. Kyrychenko, O.N. Kalugin, Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles. Mol. Simulat. 44(12), 981–991 (2018)

    Article  Google Scholar 

  22. M.F. Gu, T.T. Liu, X.Z. Xiao, G. Li, W.H. Liao, Simulation and experimental study of the multi-sized silver nanoparticles sintering process based on molecular dynamics. Nanomaterials. 12(6), 1030 (2022)

    Article  Google Scholar 

  23. Y. Qi, T. Çağin, W.L. Johnson, W.A. Goddard, Melting and crystallization in Ni nanoclusters: the mesoscale regime. J. Chem. Phys. 115, 385–394 (2001)

    Article  ADS  Google Scholar 

  24. T.D. Nguyen, C.C. Nguyen, V.H. Tran, Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Adv. 7, 25406–25413 (2017)

    Article  ADS  Google Scholar 

  25. G.M. Poletaev, A.A. Sitnikov, V.I. Yakovlev, V.Y. Filimonov, Melting point of Ti, Ti3Al, TiAl, and TiAl3 nanoparticles versus their diameter in vacuum and liquid aluminum: molecular dynamics investigation. J. Exp. Theor. Phys. 134, 183–187 (2022)

    Article  ADS  Google Scholar 

  26. I.V. Chepkasov, Y.Y. Gafner, M.A. Vysotin, L.V. Redel, A study of melting of various types of Pt–Pd nanoparticles. Phys. Solid State. 59, 2076–2081 (2017)

    Article  ADS  Google Scholar 

  27. T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys. Rev. B 42, 8548–8556 (1990)

    Article  ADS  Google Scholar 

  28. A. Safaei, M.A. Shandiz, S. Sanjabi, Z.H. Barber, Modeling the melting temperature of nanoparticles by an analytical approach. J. Phys. Chem. C 112, 99–105 (2008)

    Article  Google Scholar 

  29. K. Miyazawa, Y. Tanaka, LAMMPS molecular dynamics simulation of methane decomposition on nickel thin films at high temperatures. Surf. Sci. 713, 121904 (2021)

    Article  Google Scholar 

  30. S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys. Phys. Rev. B 37, 10378–10378 (1988)

    Article  ADS  Google Scholar 

  31. Ş. Safaltın, S. Gürmen, Molecular dynamics simulation of size, temperature, heating and cooling rates on structural formation of Ag-Cu-Ni ternary nanoparticles (Ag34-Cu33-Ni33). Comp. Mater. Sci. 183, 109842 (2020)

    Article  Google Scholar 

  32. J. Jiang, P.W. Chen, J.L. Qiu, W.F. Sun, S.A. Chizhik, A.A. Makhaniok, G.B. Melnikova, T.A. Kuznetsova, The effect of heating rate on the sintering of aluminum nanospheres. Phys. Chem. Chem. Phys. 23(20), 11684–11697 (2021)

    Article  Google Scholar 

  33. C.Y. Maghfiroh, A. Arkundato, Misto, W. Maulina, Parameters (σ, ε) of Lennard-Jones for Fe, Ni, Pb for potential and cr based on melting point values using the molecular dynamics method of the LAMMPS program. J. Phys. : Conf. Ser. 1491, 12022 (2020)

    Google Scholar 

  34. R. Wu, X. Zhao, Y. Liu, Atomic insights of Cu nanoparticles melting and sintering behavior in Cu-Cu direct bonding. Mater. Des. 197, 109240 (2021)

    Article  Google Scholar 

  35. J. Cui, L. Yang, Y. Wang, Molecular dynamics simulation study of the melting of silver nanoparticles. Integr. Ferroelectr. 145, 1–9 (2013)

    Article  ADS  Google Scholar 

  36. R. Ansari, S. Ajori, A. Ameri, Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin Mononucleotide (FMN) in aqueous environment using molecular dynamics simulations. Appl. Surf. Sci. 366, 233–244 (2016)

    Article  ADS  Google Scholar 

  37. J. Liang, J. Yuan, Z. Xu, An O(N) electrostatics package implemented in LAMMPS. Comput. Phys. Commun. 276, 108332 (2022)

    Article  MathSciNet  Google Scholar 

  38. B. Arash, B.J. Thijsse, A. Pecenko, A. Simone, Effect of water content on the thermal degradation of amorphous polyamide 6,6: a collective variable-driven hyperdynamics study. Polym. Degrad. Stabil. 146, 260–266 (2017)

    Article  Google Scholar 

  39. B. Bahtiri, B. Arash, R. Rolfes, Elucidating atomistic mechanisms underlying water diffusion in amorphous polymers: an autonomous basin climbing-based simulation method. Comp. Mater. Sci. 212, 111565 (2022)

    Article  Google Scholar 

  40. J. Nandy, S. Sahoo, N. Yedla, H. Sarangi, Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles. J. Mol. Model. 26, 125 (2020)

    Article  Google Scholar 

  41. Q. Li, M. Wang, Y. Liang, L. Lin, T. Fu, P. Wei, Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates, Physica E: Low-Dimens. Syst. Nanostruct. 90, 137–142 (2017)

    Google Scholar 

  42. R. Singh, V. Sharma, Investigations on sintering mechanism of nano tungsten carbide powder based on molecular dynamics simulation and experimental validation. Adv. Powder Technol. 33, 103724 (2022)

    Article  Google Scholar 

  43. L.T. Kong, G. Bartels, C. Campañá, C. Denniston, M.H. Müser, Implementation of Green’s function molecular dynamics: an extension to LAMMPS. Comput. Phys. Commun. 180, 1004–1010 (2009)

    Article  ADS  Google Scholar 

  44. J. Tranchida, S.J. Plimpton, P. Thibaudeau, A.P. Thompson, Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics. J. Comput. Phys. 372, 406–425 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. L.T. Kong, Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182, 2201–2207 (2011)

    Article  ADS  Google Scholar 

  46. T.V. Chitrakar, J.W. Keto, M.F. Becker, D. Kovar, Deposition and deformation of Ag nanoparticles through high-velocity impacts. Acta Mater. 135, 252–262 (2017)

    Article  ADS  Google Scholar 

  47. W.D. Luo, J.Z. Pan, Effects of surface diffusion and heating rate on first-stage sintering that densifies by grain-boundary diffusion. J. Am. Ceram. Soc. 98(11), 3483–3489 (2015)

    Article  Google Scholar 

  48. A.A. Mousavi, B. Arash, X.Y. Zhuang, T. Rabczuk, A coarse-grained model for the elastic properties of cross-linked short carbon nanotube/polymer composites. Compos. Part. B: Eng. 95, 404–411 (2016)

    Article  Google Scholar 

  49. B. Arash, H.S. Park, T. Rabczuk, Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarse-grained model. Compos. Part. B: Eng. 80, 92–100 (2015)

    Article  Google Scholar 

  50. B. Arash, H.S. Park, T. Rabczuk, Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites. Carbon. 96, 1084–1092 (2016)

    Article  Google Scholar 

  51. A.A. Mousavi, B. Arash, R. Rolfes, Optimization assisted coarse-grained modeling of agglomerated nanoparticle reinforced thermosetting polymers. Polymer. 225, 123741 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Key Research and Development Program of Shaanxi Province (2023-YBGY-467) and Xi’an Advanced Manufacturing Technology Project (21XJZZ0048) are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

LC Zhuo initiated the concept, spearheaded the methodology, investigation, structuring, and oversaw the project. Zhuo also took charge of composing the initial draft, revising & polishing the manuscript, and securing financial support. QH Wang, JC Sun, and BQ Chen were involved in the drafting, critiquing, and refinement of the manuscript. S Lin and ZX Gao engaged in the manuscript’s critique and enhancement process.

Corresponding authors

Correspondence to Longchao Zhuo, Bingqing Chen or Samuel Lin.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Consent to participate

All authors agree with written text and presented results.

Consent for publication

All authors in accordance with obtained results are willing to publish this work. This paper is original and has not been submitted to other journals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, L., Wang, Q., Sun, J. et al. Size-dependent thermal properties and sintering behaviors of silver nanoparticles: insights from molecular dynamics simulation. Appl. Phys. A 130, 394 (2024). https://doi.org/10.1007/s00339-024-07552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07552-1

Keywords

Navigation