Skip to main content
Log in

Outstanding specific capacitance of air plasma exposed MgCoSiO4 cathode in the rechargeable magnesium batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium batteries provide a promising alternative to traditional energy storage solutions due to their impressive energy density, potential safety features, and cost-effectiveness, making them highly suitable for large-scale applications. The solid state synthesis of MgCoSiO4 is reported in this work. The produced magnesium cobalt silicate nanoparticles are treated with 450 V of DC glow discharge plasma for 15 min of exposure time. The novel aspect of the MgCoSiO4 material generated in a solid state is highlighted in this research work. This material underwent plasma treatment, which changed its surface and improved its performance. Through testing and investigation, these modifications resulted in increased conductivity and overall electrode material efficiency, demonstrating the substantial influence of the treatment material functionality. It enhances the electrochemical characteristics by altering the surface energies, adhesion, and wettability. Thus the as prepared sample was made as the electrode material for further investigation. The sample’s structural, morphological, and chemical makeup was examined using XRD, FTIR, FESEM and wettability. Owning to the exclusive sponge-like morphology and more porous air plasma treated MgCoSiO4 electrode displays higher specific capacitance of 1232 F/g than the pure 296 F/g which can also exhibit 89% of capacitance retention after 6000 cycles. These results suggests that the MgCoSiO4 electrode material treated with air plasma is appropriate for use in energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that has been used in the manuscript is confidential.

Abbreviations

MgCoSiO4 :

Magnesium cobalt silicate

DC:

Direct current

XRD:

X-Ray diffraction

FTIR:

Fourier transforms infrared spectroscopy

FESEM:

Field emission scanning electron microscope

EDAX:

Energy dispersive X-Ray analysis

F/g:

Farad per gram

Mg:

Magnesium

Li:

Lithium

Na:

Sodium

K:

Kelvin

SiO:

Silicon oxide

SHE:

Standard hydrogen electrode

mAH/g:

Milli amps hour per gram

Mg2So4 :

Magnesium sulfate

MgO:

Magnesium oxide

Co3O4 :

Cobalt oxide

SiO2 :

Silicon dioxide

PVDF:

Polyvinidene difluroide

NMP:

N-Methyl2-pyrolidine

Ag:

Silver

AgCl:

Silver chloride

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

GCD:

Galvanostatic charge discharge

FWHM:

Full width half maximum

Co:

Cobalt

Si:

Silicon

KOH:

Potassium hydroxide

NaOH:

Sodium hydroxide

Rs:

Polarization resistance

Rct:

Charge transfer resistance

References

  1. S.A. Bello et al., Eggshell nanoparticle reinforced recycled low-density polyethylene: a new material for automobile application. J. King Saud Univ. Eng. Sci. 35(6), 406–414 (2023). https://doi.org/10.1016/j.jksues.2021.04.008

    Article  Google Scholar 

  2. Y. Nuli, J. Yang, Y. Li, J. Wang, Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46(21), 3794–3796 (2010). https://doi.org/10.1039/c002456b

    Article  Google Scholar 

  3. S. Ranjan et al., Nanoscience and nanotechnologies in food industries: opportunities and research trends. J. Nanoparticle Res. (2014). https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  4. J. Heath, H. Chen, M.S. Islam, MgFeSiO4 as a potential cathode material for magnesium batteries: Ion diffusion rates and voltage trends. J. Mater. Chem. A 5(25), 13161–13167 (2017). https://doi.org/10.1039/c7ta03201c

    Article  Google Scholar 

  5. R. Dastjerdi, M. Montazer, S. Shahsavan, A new method to stabilize nanoparticles on textile surfaces. Colloids Surfaces A Physicochem. Eng. Asp. 345(1–3), 202–210 (2009). https://doi.org/10.1016/j.colsurfa.2009.05.007

    Article  Google Scholar 

  6. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014). https://doi.org/10.1016/j.pmatsci.2014.04.001

    Article  Google Scholar 

  7. R. Shah, V. Mittal, E. Matsil, A. Rosenkranz, Magnesium-ion batteries for electric vehicles: current trends and future perspectives. Adv. Mech. Eng. 13(3), 1–9 (2021). https://doi.org/10.1177/16878140211003398

    Article  Google Scholar 

  8. D.Y. Kim, Y. Lim, B. Roy, Y.G. Ryu, S.S. Lee, Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation. Phys. Chem. Chem. Phys. 16(47), 25789–25798 (2014). https://doi.org/10.1039/c4cp01259c

    Article  Google Scholar 

  9. M. Asif, S. Kilian, M. Rashad, Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures. Energy Storage Mater. 42(July), 129–144 (2021). https://doi.org/10.1016/j.ensm.2021.07.031

    Article  Google Scholar 

  10. D. Aurbach et al., Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260–4267 (2007). https://doi.org/10.1002/adma.200701495

    Article  Google Scholar 

  11. J. Muldoon et al., Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5(3), 5941–5950 (2012). https://doi.org/10.1039/c2ee03029b

    Article  Google Scholar 

  12. C.B. Bucur, T. Gregory, A.G. Oliver, J. Muldoon, Confession of a magnesium battery. J. Phys. Chem. Lett. 6(18), 3578–3591 (2015). https://doi.org/10.1021/acs.jpclett.5b01219

    Article  Google Scholar 

  13. Y. Shao et al., Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci. Rep. 3, 4–10 (2013). https://doi.org/10.1038/srep03130

    Article  Google Scholar 

  14. R.C. Massé, E. Uchaker, G. Cao, Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 58(9), 715–766 (2015). https://doi.org/10.1007/s40843-015-0084-8

    Article  Google Scholar 

  15. D. Aurbach et al., A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power. Sources 97–98, 28–32 (2001). https://doi.org/10.1016/S0378-7753(01)00585-7

    Article  Google Scholar 

  16. Y. Li et al., A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34, 188–194 (2017). https://doi.org/10.1016/j.nanoen.2017.02.012

    Article  Google Scholar 

  17. Y. Orikasa et al., High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep05622

    Article  Google Scholar 

  18. M.S. Whittingham, Materials challenges facing electrical energy storage. MRS Bull. 33(4), 411–419 (2008). https://doi.org/10.1557/mrs2008.82

    Article  Google Scholar 

  19. H.D. Abruña, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors. Phys. Today 61(12), 43–47 (2008). https://doi.org/10.1063/1.3047681

    Article  ADS  Google Scholar 

  20. A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islam, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage—a review. J. Energy Storage 25, 100852 (2019). https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  21. M.T. Qureshi et al., Enhanced thermoelectric and optical response of Ag substituted Cu2O compositions for advanced applications. Ceram. Int. 49(12), 19861–19869 (2023). https://doi.org/10.1016/j.ceramint.2023.03.103

    Article  Google Scholar 

  22. J. Shin, J.K. Seo, R. Yaylian, A. Huang, Y.S. Meng, A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 65(6), 356–387 (2020). https://doi.org/10.1080/09506608.2019.1653520

    Article  Google Scholar 

  23. N. Ullah et al., Effect of cobalt doping on the structural, optical and antibacterial properties of α-MnO2 nanorods. Appl. Phys. A 127(10), 779 (2021). https://doi.org/10.1007/s00339-021-04926-7

    Article  ADS  Google Scholar 

  24. D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6(17), 4343–4372 (2019). https://doi.org/10.1002/celc.201900668

    Article  Google Scholar 

  25. U.K. Chime et al., Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Curr. Opin. Electrochem. 21, 175–181 (2020). https://doi.org/10.1016/j.coelec.2020.02.004

    Article  Google Scholar 

  26. M. Asghar et al., Synthesis of biocompatible coating on Ni-Cr alloy by cathodic cage plasma processing technique as anti-pathogenic bacteria for medicinal applications. Phys. Scr. 98(5), 55920 (2023). https://doi.org/10.1088/1402-4896/acc908

    Article  Google Scholar 

  27. L. Lyu et al., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater. Chem. Front. 3(12), 2543–2570 (2019). https://doi.org/10.1039/c9qm00348g

    Article  Google Scholar 

  28. M.T. Qureshi et al., Enhanced photocatalytic efficiency and biosensing in plasmonic nanostructures for the detection of bacteria in various analytes. Opt. Quantum Electron. 55(13), 1147 (2023). https://doi.org/10.1007/s11082-023-05345-z

    Article  Google Scholar 

  29. T. Zeeshan et al., A comparative computational and experimental study of Al–ZrO2 thin films for optoelectronic applications. Solid State Commun. 358, 115006 (2022). https://doi.org/10.1016/j.ssc.2022.115006

    Article  Google Scholar 

  30. M. Saleem et al., DFT and experimental investigations on CdTe1-xSex for thermoelectric and optoelectronic applications. J. Alloys Compd. 921, 166175 (2022). https://doi.org/10.1016/j.jallcom.2022.166175

    Article  Google Scholar 

  31. F. Ullah et al., Structural and dielectric studies of MgAl2O4–TiO2 composites for energy storage applications. Ceram. Int. 47(21), 30665–30670 (2021). https://doi.org/10.1016/j.ceramint.2021.07.244

    Article  Google Scholar 

  32. J. Joseph, A.T. Murdock, D.H. Seo, Z.J. Han, A.P. O’Mullane, K. Ken Ostrikov, Plasma enabled synthesis and processing of materials for lithium-ion batteries. Adv. Mater. Technol. 3(9), 1–19 (2018). https://doi.org/10.1002/admt.201800070

    Article  Google Scholar 

  33. S.Y. Jin, J. Manuel, X. Zhao, W.H. Park, J.H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017). https://doi.org/10.1016/j.jiec.2016.08.021

    Article  Google Scholar 

  34. H. Long, M. Zhang, Q. Wang, L. Xing, S. Wang, X. Xue, Plasma-treated Co3O4/graphene nanocomposite as high performance anode of lithium-ion battery. J. Alloys Compd. 701, 200–207 (2017). https://doi.org/10.1016/j.jallcom.2017.01.108

    Article  Google Scholar 

  35. R. Swaroop, P. Rani, G. Jamwal, G. Sabavath, H. Kumar, Y. Jewariya, Enhancing the electrochemical performance of TiO2 based material using microwave air plasma treatment with an ECR cavity. Front. Chem. 10(November), 1–16 (2022). https://doi.org/10.3389/fchem.2022.1065153

    Article  Google Scholar 

  36. D.H. Kim et al., Facile enhancement of electrochemical performance of solid-state supercapacitor via atmospheric plasma treatment on PVA-based gel-polymer electrolyte. Gels (2023). https://doi.org/10.3390/gels9040351

    Article  Google Scholar 

  37. B. Xu, H. Shen, J. Ge, Q. Tang, Improved cycling performance of SiOx/MgO/Mg2SiO4/C composite anode materials for lithium-ion battery. Appl. Surf. Sci. 546, 148814 (2021). https://doi.org/10.1016/j.apsusc.2020.148814

    Article  Google Scholar 

  38. Y.S. Su, K.C. Hsiao, P. Sireesha, J.Y. Huang, Lithium silicates in anode materials for li-ion and li metal batteries. Batteries 8(1), 1–17 (2022). https://doi.org/10.3390/batteries8010002

    Article  Google Scholar 

  39. S. Kumar, N. Munichandraiah, Magnesium cobalt silicate as a bifunctional catalyst for the O2 electrode and its application in Li-O2 cells. Catal. Sci. Technol. 6(17), 6716–6725 (2016). https://doi.org/10.1039/c6cy00029k

    Article  Google Scholar 

  40. S. Saveetha, K.A. Vijayalakshmi, Influence of Low temperature Plasma on activated bamboo charcoal employed in energy storage system. Xidian Univ. 16(1001), 12–22 (2022)

    Google Scholar 

  41. K.A. Vijayalakshmi, K. Vignesh, N. Karthikeyan, Synthesis and surface characterization of bamboo charcoal carbon using low temperature plasma treatment. Mater. Technol. 30(A2), A99–A103 (2015). https://doi.org/10.1179/17535557A15Y.000000005

    Article  ADS  Google Scholar 

  42. J.Z. Sun, Sol-gel synthesis of cathode material MgMnSiO 4 for magnesium cells. J. Chem. Soc. Pak. 34(3), 611–614 (2012)

    Google Scholar 

  43. K.A. Vijayalakshmi, M. Vimala, Impact of non-thermal plasma on SiO 2 nano particles synthesized by rice husk. Digest J Nanomater. Biostruct. 17(3), 1073–1078 (2022)

    Article  Google Scholar 

  44. S. Saveetha, K.A. Vijayalakshmi, The morphological study of FePO4/plasma treated bamboo charcoal composite act as cathode material in energy storage devices. Dig. J. Nanomater. Biostructures 16(4), 1359–1363 (2021). https://doi.org/10.15251/djnb.2021.164.1359

    Article  Google Scholar 

  45. S. Hoseini, N. Rahemi, S. Allahyari, M. Tasbihi, Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J. Clean. Prod. 232, 1134–1147 (2019). https://doi.org/10.1016/j.jclepro.2019.05.227

    Article  Google Scholar 

  46. C. Bai et al., Plasma treated carbon paper electrode greatly improves the performance of iron-hydrogen battery for low-cost energy storage. Chin. Chem. Lett. 33(2), 1095–1099 (2022). https://doi.org/10.1016/j.cclet.2021.07.008

    Article  Google Scholar 

  47. A. Feng, B.J. McCoy, Z.A. Munir, D. Cagliostro, Wettability of transition metal oxide surfaces. Mater. Sci. Eng. A 242(1–2), 50–56 (1998). https://doi.org/10.1016/s0921-5093(97)00527-3

    Article  Google Scholar 

  48. N.T. Oxide et al., Wettability of nanostructured transition-metal oxide (Al 2 O 3, CeO 2, and AlCeO 3) powder surfaces. Materials (Basel) 15(5485), 1–12 (2022)

    Google Scholar 

  49. R. Sangiorgi, M.L. Muolo, D. Chatain, N. Eustathopoulos, Wettability and work of adhesion of nonreactive liquid metals on silica. J. Am. Ceram. Soc. 71(9), 742–748 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb06407.x

    Article  Google Scholar 

  50. S.Z. Bai et al., Preparation and characterization of BCN. Gaodeng Xuexiao Huaxue Xuebao/Chemical J. Chinese Univ. 26(5), 811–815 (2005)

    Google Scholar 

  51. C. Koventhan, V. Vinothkumar, S. Chen, P. Veerakumar, K. Lin, Polyol-assisted synthesis of spinel-type magnesium cobalt oxide nanochains for voltammetric determination of the antipsychotic drug thioridazine. J. Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.115600

    Article  Google Scholar 

  52. R. Boopathiraja, M. Parthibavarman, A.N. Begum, Hydrothermal induced novel CuCo 2 O 4 electrode for high performance supercapacitor applications. Vacuum 165(April), 96–104 (2019). https://doi.org/10.1016/j.vacuum.2019.04.013

    Article  ADS  Google Scholar 

  53. R. Boopathiraja, M. Parthibavarman, The cost-effective asymmetric supercapacitor from binary MnCo2O4 electrodes with nanofiber and nanocube-like morphology. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03560-y

    Article  Google Scholar 

  54. S. Saveetha, V. Ka, Exploring the electrochemical behaviour of DC glow discharge plasma exposed activated bamboo charcoal incorporated with FePO 4 nanoparticles in energy storage applications. Mater. Technol. 00(00), 1–10 (2022). https://doi.org/10.1080/10667857.2022.2086768

    Article  Google Scholar 

  55. B.P. Ajayi, A.K. Thapa, U. Cvelbar, J.B. Jasinski, M.K. Sunkara, Atmospheric plasma spray pyrolysis of lithiated nickel-manganese-cobalt oxides for cathodes in lithium ion batteries. Chem. Eng. Sci. 174, 302–310 (2017). https://doi.org/10.1016/j.ces.2017.09.022

    Article  Google Scholar 

  56. Z. Li, Q. Jiang, Z. Ma, Q. Liu, Z. Wu, S. Wang, Oxygen plasma modified separator for lithium sulfur battery. RSC Adv. 5(97), 79473–79478 (2015). https://doi.org/10.1039/c5ra17629h

    Article  ADS  Google Scholar 

  57. J. Meng et al., Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 10(16), 13652–13659 (2018). https://doi.org/10.1021/acsami.8b04438

    Article  Google Scholar 

  58. Q. Jiang, Z. Li, S. Wang, H. Zhang, A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Adv. 5(113), 92995–93001 (2015). https://doi.org/10.1039/c5ra18457f

    Article  ADS  Google Scholar 

  59. T. Nakajima et al., Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries. J. Power. Sources 104(1), 108–114 (2002). https://doi.org/10.1016/S0378-7753(01)00895-3

    Article  ADS  Google Scholar 

  60. J. Profili et al., Toward more sustainable rechargeable aqueous batteries using plasma-treated cellulose-based li-ion electrodes. ACS Sustain. Chem. Eng. (2020). https://doi.org/10.1021/acssuschemeng.9b07125

    Article  Google Scholar 

  61. Q. D. Truong, M. K. Devaraju, and I. Honma, “Rechargeable Mg-ion Batteries,” pp. 1–20.

  62. Y. Nuli, Y. Zheng, Y. Wang, J. Yang, J. Wang, Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 21(33), 12437–12443 (2011). https://doi.org/10.1039/c1jm10485c

    Article  Google Scholar 

  63. Y. Zheng, Y. Nuli, Q. Chen, Y. Wang, J. Yang, J. Wang, Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochim. Acta 66, 75–81 (2012). https://doi.org/10.1016/j.electacta.2012.01.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Judith fennila T first author and original draft writing of the manuscript. Dr K A Vijayalakshmi corresponding author and supervision of the manuscript.

Corresponding author

Correspondence to K. A. Vijayalakshmi.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fennila, T.J., Vijayalakshmi, K.A. Outstanding specific capacitance of air plasma exposed MgCoSiO4 cathode in the rechargeable magnesium batteries. Appl. Phys. A 130, 392 (2024). https://doi.org/10.1007/s00339-024-07551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07551-2

Keywords

Navigation