Skip to main content
Log in

Effect of cobalt doping on the structural, optical and antibacterial properties of α-MnO2 nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have successfully synthesized pure and Cobalt (2.5% and 5%) doped-MnO2 nanorods via a simple hydrothermal route. The morphological, structural, optical, and antibacterial effects, were studied using advanced analytical techniques. The grain sizes of as-prepared nanorods, were calculated in the range of 21–26 nm. The UV–Visible absorption spectroscopy shows a broad absorption band, centered at ~ 450 nm for pure, and ~ 465 nm for cobalt-doped MnO2 nanorods, respectively. The reduction in band gap was observed from 2.36 to 1.96 eV with the increase in the dopant concentration. The antimicrobial activities of synthesized samples were studied against gram-negative (E. coli and P.aeruginosa) bacteria and a gram-positive (S.aureus) bacteria. The antimicrobial studies show inhibition zones in the range of 9–16 mm for pure and cobalt-doped MnO2. The maximum inhibition zone (MIC) was observed for 5% Co-MnO2 doping against E. coli. We believe that the synthesized nanorods can be used as antimicrobial agent, and that could be used for antibacterial drug applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Jagadeeshan, R. Parsanathan, Nano-metal oxides for antibacterial activity, in Advanced Nanostructured Materials for Environmental Remediation. Environmental Chemistry for a Sustainable World, vol. 25, ed. by M. Naushad, S. Rajendran, F. Gracia (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-04477-0_3

    Chapter  Google Scholar 

  2. C. Rao, S. Vivekchand, K. Biswas, A. Govindaraj, Dalton Trans. (2007). https://doi.org/10.1039/b708342d

    Article  Google Scholar 

  3. S.C. Pang, S.F. Chin, C.Y. Ling, J. Nanomater. 2012, 2 (2012)

    Google Scholar 

  4. P. Zhang, X. Li, Q. Zhao, S. Liu, Nanoscale Res. Lett. 6, 323 (2011)

    Article  ADS  Google Scholar 

  5. K. Yu, J. Chen, Nanoscale Res. Lett. 4, 1 (2009)

    Article  ADS  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  7. R. Shi, Y. Wang, D. Li, J. Xu, Y. Zhu, Appl. Catal. B 100, 173 (2010)

    Article  Google Scholar 

  8. H.M. Abuzeid, A.M. Hashem, M. Kaus, M. Knapp, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, J. Alloy. Compd. 746, 227 (2018)

    Article  Google Scholar 

  9. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Small 14, 1702883 (2018)

    Article  Google Scholar 

  10. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Inorg. Chem. 45, 2038 (2006)

    Article  Google Scholar 

  11. S.L. Suib, Acc. Chem. Res. 41, 479 (2008)

    Article  Google Scholar 

  12. A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, C. Julien, Mater. Chem. Phys. 130, 33 (2011)

    Article  Google Scholar 

  13. M. Eriksson, K. Ämmälä, I. Levy, J. Gastaud, J. Lehto, J. Scholten, J. Environ. Radioact. 204, 66 (2019)

    Article  Google Scholar 

  14. D. Jin, R. Liu, X. Ding, L. Wang, L. Wang, L. Yue, Particuology 17, 54 (2014)

    Article  Google Scholar 

  15. J. Zeng, S. Wang, J. Yu, H. Cheng, H. Tan, Q. Liu, J. Wu, J. Solid State Electrochem. 18, 1585 (2014)

    Article  Google Scholar 

  16. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, J. Mater. Chem. 22, 18291 (2012)

    Article  Google Scholar 

  17. P.K. Sharma, G.J. Moore, F. Zhang, P. Zavalij, M.S. Whittingham, Electrochem. Solid-State Lett. 2, 494 (1999)

    Article  Google Scholar 

  18. A.N.P. Madathil, K. Vanaja, M. Jayaraj, in Proceedings Volume 6639, Nanophotonic Materials IV, vol. 66390J (17 September 2007)

  19. A. Khan, R. Hussain, A.M. Toufiq, A. Shah, B.A. Khan, Z. Niaz, S.U. Rahman, Mater. Charact. 169, 110661 (2020)

    Article  Google Scholar 

  20. C. Lume-Pereira, S. Baral, A. Henglein, E. Janata, J. Phys. Chem. 89, 5772–5778 (1985)

    Article  Google Scholar 

  21. A. Mohammad Toufiq, F. Wang, Q.U.A. Javed, Q. Li, Y. Li, Mater. Lett. 118, 34–38 (2014)

    Article  Google Scholar 

  22. B. Ramalingam, T. Parandhaman, S.K. Das, ACS Appl. Mater. Interfaces 8, 4963 (2016)

    Article  Google Scholar 

  23. D.L. Slomberg, Y. Lu, A.D. Broadnax, R.A. Hunter, A.W. Carpenter, M.H. Schoenfisch, ACS Appl. Mater. Interfaces 5, 9322 (2013)

    Article  Google Scholar 

  24. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Evidence-based complementary and alternative med. 246012 (2015)

  25. M. Bilal, T. Rasheed, H.M. Iqbal, H. Hu, W. Wang, X. Zhang, Int. J. Biol. Macromol. 103, 554 (2017)

    Article  Google Scholar 

  26. N.A. Neto, K. Matsui, C. Paskocimas, M. Bomio, F. Motta, Mater. Sci. Semicond. Process. 93, 123 (2019)

    Article  Google Scholar 

  27. S. AlFaify, M. Shkir, Opt. Mater. 88, 417 (2019)

    Article  ADS  Google Scholar 

  28. M. Ali, R. Hussain, F. Tariq, Z. Noreen, A.M. Toufiq, H. Bokhari, N. Akhtar, S. Rahman, Appl. Nanosci. 10(3), 1005–1012 (2020)

    Article  ADS  Google Scholar 

  29. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  Google Scholar 

  30. X. Liu, L. Shi, W. Jiang, J. Zhang, L. Huang, Chem. Eng. Sci. 192, 414 (2018)

    Article  Google Scholar 

  31. A. Khan, A.M. Toufiq, F. Tariq, Y. Khan, R. Hussain, N. Akhtar, S. Rahman, Mater. Res. Express 6, 065043 (2019)

    Article  ADS  Google Scholar 

  32. R.E. John, A. Chandran, M. Thomas, J. Jose, K.C. George, Appl. Surf. Sci. 367, 43–51 (2016)

    Article  ADS  Google Scholar 

  33. S. Jana, S. Pande, A.K. Sinha, S. Sarkar, M. Pradhan, M. Basu, S. Saha, T. Pal, J. Phys. Chem. C 113, 1386–92 (2009)

    Article  Google Scholar 

  34. M.J. Hosseini-Zori, Photochem. Photobiol. B Biol. 178, 512–520 (2018)

    Article  Google Scholar 

  35. J. Su, H. Gong, J. Lai, A. Main, S. Lu, Infect. Immun. 77, 667–675 (2009)

    Article  Google Scholar 

  36. Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 7, 148–153 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi Arabia through project number (RG-20 130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tauseef Qureshi.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript and the authors have complied with journal ethical requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, N., Qureshi, M.T., Toufiq, A.M. et al. Effect of cobalt doping on the structural, optical and antibacterial properties of α-MnO2 nanorods. Appl. Phys. A 127, 779 (2021). https://doi.org/10.1007/s00339-021-04926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04926-7

Keywords

Navigation