Skip to main content
Log in

Octagonal flower-shaped wideband polarization insensitive metamaterial absorber for solar harvesting application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metamaterial absorbers (MMA) attract great interest due to their unique properties. For energy harvesting from solar MMA in the optical region having wide bandwidth is one of the top research sectors nowadays. Our main solar source is the sun which includes UV, NIR and visible wavelength. Among them, the visible wavelength is most important for harnessing energy. Absorber operating in this region has a variety of application fields. In this study, the process of achieving a high absorption rate for total solar visible wavelength is being proposed. Various properties of the proposed MMA have also been analyzed to comprehend its characteristics. Geometric analysis was performed to optimize the design and output characteristics for optimal value and probable application. Cross and co-polarization, along with PCR (Polarization Conversion Ratio) verification, were also evaluated. The proposed MMA operates for full visible wavelength spanning 380 nm to 700 nm. It has an absorption rate of 97.8% and peak absorption of 99.9%. An above 90.8% absorption level was achieved throughout the operating wavelength. Furthermore, this absorber is totally polarization insensitive and the incident angle is independent up to 70°. A comprehensive parametric assessment has been conducted to accurately characterize the absorber and understand how the results are derived. Finite Integration Technique (FIT) has been employed for calculating absorbance and reflectance. The proposed model shows similar absorbance across TEM, TE, and TM waveguide propagation modes. Furthermore, the constancy of the polarization angle has been validated. Because of the excellent metamaterial properties, the proposed metamaterial absorber can be used for optical range, solar harvesting, solar cell, and solar thermophotovoltaic (STPV) applications. It can be used for light-detecting and sensing applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study are presented in this article.

References

  1. V.G. Veselago, Reviews of topical problems: the electrodynamics of substances with simultaneously negative values of \epsilon and μ. Soviet Phys. Uspekhi 10(4), R04 (1968)

    Article  ADS  Google Scholar 

  2. R.S. Kshetrimayum, A brief intro to metamaterials. IEEE Potentials 23(5), 44–46 (2004)

    Article  Google Scholar 

  3. D. Schurig, J. Mock, D. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2166681

    Article  Google Scholar 

  4. B. Li, G. Sui, W.H. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21(41), 4176–4180 (2009)

    Article  Google Scholar 

  5. N. Engheta, An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Antennas Wirel. Propag. Lett. 1, 10–13 (2002)

    Article  ADS  Google Scholar 

  6. R. Marqués, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65(14), 144440 (2002)

    Article  ADS  Google Scholar 

  7. W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials. Mater. Today 9(7–8), 28–35 (2006)

    Article  Google Scholar 

  8. J. Zeng, X. Wang, J. Sun, A. Pandey, A.N. Cartwright, N.M. Litchinitser, Manipulating complex light with metamaterials. Sci. Rep. 3(1), 2826 (2013)

    Article  ADS  Google Scholar 

  9. G. Lipworth et al., Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4(1), 3642 (2014)

    Article  Google Scholar 

  10. N. Fang, X. Zhang, "Imaging properties of a metamaterial superlens," in Proceedings of the 2nd IEEE Conference on Nanotechnology. IEEE. pp. 225–228 (2002)

  11. S.S. Islam, M.R.I. Faruque, M.T. Islam, An object-independent ENZ metamaterial-based wideband electromagnetic cloak. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  12. B. Kanté, D. Germain, A. de Lustrac, Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys. Rev. B 80(20), 201104 (2009)

    Article  ADS  Google Scholar 

  13. Y. Wang et al., Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 16, 102951 (2020)

    Article  ADS  Google Scholar 

  14. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  15. C. Cen et al., Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results Phys. 14, 102463 (2019)

    Article  Google Scholar 

  16. M.R.I. Faruque, E. Ahamed, M.A. Rahman, M.T. Islam, Flexible nickel aluminate (NiAl2O4) based dual-band double negative metamaterial for microwave applications. Results Phys. 14, 102524 (2019)

    Article  Google Scholar 

  17. T.M. Hossain, M.F. Jamlos, M.A. Jamlos, P.J. Soh, M.I. Islam, R. Khan, Modified H-shaped DNG metamaterial for multiband microwave application. Appl. Phys. A 124, 1–7 (2018)

    Article  Google Scholar 

  18. A.M. Tamim, M.R.I. Faruque, M.J. Alam, S.S. Islam, M.T. Islam, Split ring resonator loaded horizontally inverse double L-shaped metamaterial for C-, X-and Ku-Band Microwave applications. Results Phys. 12, 2112–2122 (2019)

    Article  ADS  Google Scholar 

  19. H.-T. Chen, W.J. Padilla, J.M. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

    Article  ADS  Google Scholar 

  20. H.-E. Su, J.-L. Li, L. Xia, A novel temperature controlled broadband metamaterial absorber for THz applications. IEEE Access 7, 161255–161263 (2019)

    Article  Google Scholar 

  21. R. Bilal et al., Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci. Rep. 10(1), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  22. S. Mahmud, S.S. Islam, A.F. Almutairi, M.T. Islam, A wide incident angle, ultrathin, polarization-insensitive metamaterial absorber for optical wavelength applications. IEEE Access 8, 129525–129541 (2020)

    Article  Google Scholar 

  23. S. Mahmud et al., A multi-band near perfect polarization and angular insensitive metamaterial absorber with a simple octagonal resonator for visible wavelength. IEEE Access 9, 117746–117760 (2021)

    Article  Google Scholar 

  24. T. Chen, S. Li, H. Sun, Metamaterials application in sensing. Sensors 12(3), 2742–2765 (2012)

    Article  ADS  Google Scholar 

  25. A. Tamer et al., Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chem. Phys. Lett. 742, 137169 (2020)

    Article  Google Scholar 

  26. Y.I. Abdulkarim et al., Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J. Market. Res. 9(5), 10291–10304 (2020)

    Google Scholar 

  27. W.J. Padilla, R.D. Averitt, Imaging with metamaterials. Nat. Rev Phys. 4(2), 85–100 (2022)

    Article  Google Scholar 

  28. G. Lipworth et al., Comprehensive simulation platform for a metamaterial imaging system. Appl. Opt. 54(31), 9343–9353 (2015)

    Article  ADS  Google Scholar 

  29. D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, W.J. Padilla, Experimental realization of a metamaterial detector focal plane array. Phys. Rev. Lett. 109(17), 177401 (2012)

    Article  ADS  Google Scholar 

  30. M.M. Hassan, F.S. Sium, F. Islam, S.M. Choudhury, A review on plasmonic and metamaterial based biosensing platforms for virus detection. Sensing Bio-Sensing Res. 33, 100429 (2021)

    Article  Google Scholar 

  31. S. Mahmud, S.S. Islam, K. Mat, M.E. Chowdhury, H. Rmili, M.T. Islam, Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results Phys. 18, 103259 (2020)

    Article  Google Scholar 

  32. Z.-Q. Lu, L. Zhao, H. Ding, L.-Q. Chen, A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)

    Article  Google Scholar 

  33. M.B. Hossain, M.R.I. Faruque, S.S. Islam, M.T. Islam, Modified double dumbbell-shaped split-ring resonator-based negative permittivity metamaterial for satellite communications with high effective medium ratio. Sci. Rep. 11(1), 19331 (2021)

    Article  ADS  Google Scholar 

  34. M.R. Islam et al., Square enclosed circle split ring resonator enabled epsilon negative (ENG) near zero index (NZI) metamaterial for gain enhancement of multiband satellite and radar antenna applications. Results Phys. 19, 103556 (2020)

    Article  Google Scholar 

  35. M.T. Islam, M. Cho, M. Samsuzzaman, S. Kibria, Compact antenna for small satellite applications [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 57(2), 30–36 (2015)

    Article  ADS  Google Scholar 

  36. M. Islam, M.T. Islam, M. Samsuzzaman, M.R.I. Faruque, Compact metamaterial antenna for UWB applications. Electron. Lett. 51(16), 1222–1224 (2015)

    Article  ADS  Google Scholar 

  37. M.H. Habaebi, M. Janat, M.R. Islam, B. Hamida, "Phased array antenna metamaterial based design operating in millimeter wave for 5G mobile networks," in 2016 IEEE Student Conference on Research and Development (SCOReD), IEEE, pp. 1–4 (2016)

  38. T. Shabbir, R. Saleem, S.S. Al-Bawri, M.F. Shafique, M.T. Islam, Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications. IEEE Access 8, 106982–106992 (2020)

    Article  Google Scholar 

  39. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas. Proc. IEEE 99(10), 1720–1731 (2010)

    Article  Google Scholar 

  40. R. Azim, M.T. Islam, A.T. Mobashsher, Design of a dual band-notch UWB slot antenna by means of simple parasitic slits. IEEE Antennas Wirel. Propag. Lett. 12, 1412–1415 (2013)

    Article  ADS  Google Scholar 

  41. M.S. Alam, N. Misran, B. Yatim, and M. T. Islam, Development of electromagnetic band gap structures in the perspective of microstrip antenna design, Int. J. Antennas Propag (2013)

  42. R. Azim, M.T. Islam, N. Misran, S. Cheung, Y. Yamada, Planar UWB antenna with multi-slotted ground plane. Microw. Opt. Technol. Lett. 53(5), 966–968 (2011)

    Article  Google Scholar 

  43. J. Tiang, M. Islam, N. Misran, J. Mandeep, Slot loaded circular microstrip antenna with meandered slits. J. Electromagn. Waves Appl. 25(13), 1851–1862 (2011)

    Article  ADS  Google Scholar 

  44. N. Alrayes, M.I. Hussein, Metamaterial-based sensor design using split ring resonator and Hilbert fractal for biomedical application. Sensing Bio-Sensing Res. 31, 100395 (2021)

    Article  Google Scholar 

  45. R.K. Pokharel, A. Barakat, S. Alshhawy, K. Yoshitomi, C. Sarris, Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications. Sci. Rep. 11(1), 5868 (2021)

    Article  ADS  Google Scholar 

  46. C. Enkrich et al., Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95(20), 203901 (2005)

    Article  ADS  Google Scholar 

  47. M. AbuHussain, U.C. Hasar, Design of X-bandpass waveguide Chebyshev filter based on CSRR metamaterial for telecommunication systems. Electronics 9(1), 101 (2020)

    Article  Google Scholar 

  48. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31(12), 1800–1802 (2006)

    Article  ADS  Google Scholar 

  49. A.S. Dhillon, D. Mittal, R. Bargota, Triple band ultrathin polarization insensitive metamaterial absorber for defense, explosive detection and airborne radar applications. Microw. Opt. Technol. Lett. 61(1), 89–95 (2019)

    Article  Google Scholar 

  50. Y. Liu, Y. Hao, K. Li, S. Gong, Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial. IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2015)

    Article  ADS  Google Scholar 

  51. S.A. Cummer, J. Christensen, A. Alù, Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1(3), 1–13 (2016)

    Article  Google Scholar 

  52. R.L. Harne, Y. Song, Q. Dai, Trapping and attenuating broadband vibroacoustic energy with hyperdamping metamaterials. Extreme Mechan. Lett. 12, 41–47 (2017)

    Article  Google Scholar 

  53. S. Zhang, L. Yin, N. Fang, Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 194301 (2009)

    Article  ADS  Google Scholar 

  54. J.-Y. Jang, C.-S. Park, K. Song, Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation. Mech. Syst. Signal Process. 178, 109270 (2022)

    Article  Google Scholar 

  55. J.W. Jung, J.E. Kim, J.W. Lee, Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range. Appl. Phys. Lett. 112(4), 041903 (2018)

    Article  ADS  Google Scholar 

  56. S. Haxha, F. AbdelMalek, F. Ouerghi, M. Charlton, A. Aggoun, X. Fang, Metamaterial superlenses operating at visible wavelength for imaging applications. Sci. Rep. 8(1), 16119 (2018)

    Article  ADS  Google Scholar 

  57. K. Aydin, I. Bulu, E. Ozbay, Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2750393

    Article  Google Scholar 

  58. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–441 (2008)

    Article  ADS  Google Scholar 

  59. R.K. Mishra, R.D. Gupta, S. Datar, Metamaterial microwave absorber (MMA) for electromagnetic interference (EMI) shielding in X-band. Plasmonics 16(6), 2061–2071 (2021)

    Article  Google Scholar 

  60. M. Jaroszewski, S. Thomas, and A. V. Rane, Advanced materials for electromagnetic shielding: fundamentals, properties, and applications (2018)

  61. A. Rahman, M.T. Islam, M.J. Singh, S. Kibria, M. Akhtaruzzaman, Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra. Sci. Rep. 6(1), 38906 (2016)

    Article  ADS  Google Scholar 

  62. M.Z. Mahmud, M.T. Islam, N. Misran, S. Kibria, M. Samsuzzaman, Microwave imaging for breast tumor detection using uniplanar AMC based CPW-fed microstrip antenna. IEEE Access 6, 44763–44775 (2018)

    Article  Google Scholar 

  63. M.T. Islam, M. Samsuzzaman, M.T. Islam, S. Kibria, M.J. Singh, A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor. Sensors 18(9), 2962 (2018)

    Article  ADS  Google Scholar 

  64. M. Rokunuzzaman, M. Samsuzzaman, M.T. Islam, Unidirectional wideband 3-D antenna for human head-imaging application. IEEE Antennas Wirel. Propag. Lett. 16, 169–172 (2016)

    Article  ADS  Google Scholar 

  65. J.C. Song, N.M. Gabor, Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13(11), 986–993 (2018)

    Article  ADS  Google Scholar 

  66. A.M. Zagoskin, D. Felbacq, E. Rousseau, Quantum metamaterials in the microwave and optical ranges. EPJ Quantum Technol. 3(1), 1–17 (2016)

    Article  Google Scholar 

  67. A. Afridi, S. Ullah, S. Khan, A. Ahmed, A.H. Khalil, M.A. Tarar, Design of dual band wearable antenna using metamaterials. J. Microw. Power Electromagn. Energy. 47(2), 126–137 (2013)

    ADS  Google Scholar 

  68. S. Il Kwak, D.-U. Sim, J.H. Kwon, Y.J. Yoon, Design of PIFA with metamaterials for body-SAR reduction in wearable applications. IEEE Trans. Electromagn. Compatib. 59(1), 297–300 (2016)

    Article  Google Scholar 

  69. F. Hu, W. Wang, J. Cheng, Y. Bao, Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics. Sci. Prog. 103(3), 0036850420946162 (2020)

    Article  Google Scholar 

  70. A. Rafsanjani, K. Bertoldi, A.R. Studart, Programming soft robots with flexible mechanical metamaterials. Sci. Robot. 4(29), 7874 (2019)

    Article  Google Scholar 

  71. T.J. Sheng et al., An internet of things based smart waste management system using LoRa and tensorflow deep learning model. IEEE Access 8, 148793–148811 (2020)

    Article  Google Scholar 

  72. M. Shahidul Islam, M.T. Islam, A.F. Almutairi, G.K. Beng, N. Misran, Monitoring of the human body signal through the Internet of Things (IoT) based LoRa wireless network system. Appl. Sci. 9(9), 1884 (2019)

    Article  Google Scholar 

  73. P. Wang, M.E. Nasir, A.V. Krasavin, W. Dickson, Y. Jiang, A.V. Zayats, Plasmonic metamaterials for nanochemistry and sensing. Acc. Chem. Res. 52(11), 3018–3028 (2019)

    Article  Google Scholar 

  74. W. Li et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26(47), 7959–7965 (2014)

    Article  ADS  Google Scholar 

  75. Y.-C. Lai, C.-Y. Chen, Y.-T. Hung, C.-Y. Chen, Extending absorption edge through the hybrid resonator-based absorber with wideband and near-perfect absorption in visible region. Materials 13(6), 1470 (2020)

    Article  ADS  Google Scholar 

  76. M.L. Hakim et al., Wide-oblique-incident-angle stable polarization-insensitive ultra-wideband metamaterial perfect absorber for visible optical wavelength applications. Materials 15(6), 2201 (2022)

    Article  ADS  Google Scholar 

  77. H. Luo, Y.Z. Cheng, Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures. Mod. Phys. Lett. B 31(25), 1750231 (2017)

    Article  ADS  Google Scholar 

  78. P. Yu et al., Ultra-wideband solar absorber based on refractory titanium metal. Renewable Energy 158, 227–235 (2020)

    Article  Google Scholar 

  79. N. Muhammad, T. Fu, Q. Liu, X. Tang, Z.-L. Deng, Z. Ouyang, Plasmonic metasurface absorber based on electro-optic substrate for energy harvesting. Materials 11(11), 2315 (2018)

    Article  ADS  Google Scholar 

  80. D. Katrodiya, C. Jani, V. Sorathiya, S.K. Patel, Metasurface based broadband solar absorber. Opt. Mater. 89, 34–41 (2019)

    Article  ADS  Google Scholar 

  81. J. Li et al., Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 16, 100390 (2020)

    Article  Google Scholar 

  82. Y. Lin et al., Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Mater. Express 7(2), 606–617 (2017)

    Article  ADS  Google Scholar 

  83. M. Chirumamilla et al., Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions. Sci. Rep. 10(1), 3605 (2020)

    Article  ADS  Google Scholar 

  84. N. Pirouzfam, K. Sendur, Tungsten based spectrally selective absorbers with anisotropic rough surface texture. Nanomaterials 11(8), 2018 (2021)

    Article  Google Scholar 

  85. M.M.K. Shuvo et al., Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range. Sci. Rep. 12(1), 4857 (2022)

    Article  ADS  Google Scholar 

  86. M.M. Soliman et al., Broadband near unity absorption meta-structure for solar thermophotovoltaic systems and optical window applications. Nanoscale 15(31), 12972–12994 (2023)

    Article  Google Scholar 

  87. E.J. Rothwell, J.L. Frasch, S.M. Ellison, P. Chahal, R.O. Ouedraogo, Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials. Prog. Electromag. Res. 157, 31–47 (2016)

    Article  Google Scholar 

  88. J. Qu, H. Pan, Y.Z. Sun, H.F. Zhang, Multitasking Device Regulated by the Gravity Field: Broadband Anapole-Excited Absorber and Linear Polarization Converter. Ann. Phys. 534(9), 2200175 (2022)

    Article  Google Scholar 

  89. Y. Wen et al., A Multifunctional Integrated Design of Simultaneous Unity Absorption and Polarization Conversion. Plasmonics 15, 1141–1149 (2020)

    Article  Google Scholar 

  90. B. Liu et al., Broadband, wide-angle, and polarization-insensitive enhancement of light absorption in monolayer graphene over whole visible spectrum. Results Phys. 18, 103134 (2020)

    Article  ADS  Google Scholar 

  91. J. Kim, H. Oh, B. Kang, J. Hong, J.-J. Rha, M. Lee, Broadband visible and near-infrared absorbers implemented with planar nanolayered stacks. ACS Appl. Nano Mater. 3(3), 2978–2986 (2020)

    Article  Google Scholar 

  92. I. Hossain, M. Samsuzzaman, M. Moniruzzaman, B.B. Bais, M.S.J. Singh, M.T. Islam, Polarization-independent broadband optical regime metamaterial absorber for solar harvesting: A numerical approach. Chin. J. Phys. 71, 699–715 (2021)

    Article  MathSciNet  Google Scholar 

  93. P. Pitchappa, C.P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, C. Lee, Dual band complementary metamaterial absorber in near infrared region. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4878459

    Article  Google Scholar 

  94. U. Köse, E. Ekmekçi, The effects of the dielectric substrate thickness and the loss tangent on the absorption spectrum: a comprehensive study considering the resonance type, the ground plane coupling, and the characterization setup (2023)

  95. Y. Zhou et al., Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 10(1), 138 (2021)

    Article  ADS  Google Scholar 

  96. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. Averitt, X. Zhang, Identifying the perfect absorption of metamaterial absorbers. Phys. Rev. B 97(3), 035128 (2018)

    Article  ADS  Google Scholar 

  97. H. Wang, L. Wang, Perfect selective metamaterial solar absorbers. Opt. Express 21(106), A1078–A1093 (2013)

    Article  ADS  Google Scholar 

  98. X. Zeng, M. Gao, L. Zhang, G. Wan, B. Hu, Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw. Opt. Technol. Lett. 60(7), 1676–1681 (2018)

    Article  Google Scholar 

  99. N.T.Q. Hoa, P.D. Tung, P.H. Lam, N.D. Dung, N.H. Quang, Numerical study of an ultrabroadband, wide-angle, polarization-insensitivity metamaterial absorber in the visible region. J. Electron. Mater. 47, 2634–2639 (2018)

    Article  ADS  Google Scholar 

  100. P. Zhu, L. Jay Guo, High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 101(24), 241116 (2012)

    Article  ADS  Google Scholar 

  101. X. Zhang, Y. Fan, L. Qi, H. Li, Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies. Optic. Mater. Express 6(7), 2448–2457 (2016)

    Article  ADS  Google Scholar 

  102. M.K. Hedayati et al., Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 23(45), 5410–5414 (2011)

    Article  Google Scholar 

  103. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, L. Chen, Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt. Express 25(14), 16715–16724 (2017)

    Article  ADS  Google Scholar 

  104. S. Butun, K. Aydin, Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Opt. Express 22(16), 19457–19468 (2014)

    Article  ADS  Google Scholar 

  105. A. Hoque, M.T. Islam, Numerical analysis of single negative broadband metamaterial absorber based on tri thin layer material in visible spectrum for solar cell energy harvesting. Plasmonics 15(4), 1061–1069 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, investigation, methodology, writing-original draft, M.R.; formal analysis, result investigation, review, S.S.I; final review and editing A.R.S

Corresponding author

Correspondence to Md Raihan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raihan, M., Islam, S.S. & Shuvo, A.R. Octagonal flower-shaped wideband polarization insensitive metamaterial absorber for solar harvesting application. Appl. Phys. A 130, 351 (2024). https://doi.org/10.1007/s00339-024-07513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07513-8

Keywords

Navigation