Skip to main content
Log in

A Multifunctional Integrated Design of Simultaneous Unity Absorption and Polarization Conversion

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, an integrated multifunctional design for simultaneous perfect absorption and polarization conversion is proposed that worked in the Ku band: the proposed structure consisted of two asymmetric dielectric semi-rings which are supported on a ground plane by two dielectric cylinders with different heights. Simulated results demonstrate that unity absorption and linear cross-polarization conversion can be integrated into one multifunctional structure: absorption and polarization conversion operate at different frequencies. Furthermore, these different functions under the different polarized modes (TE and TM) are integrated into the single structure without adjusting any parameters, while also at a large range of incident angles. The integrated design is more conducive to the miniaturization and multi-functionality of devices and there are also practical applications in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 10(4):509–514

    Google Scholar 

  2. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792

    CAS  PubMed  Google Scholar 

  3. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):98–OP120

    Google Scholar 

  4. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20(7):7165–7172

    PubMed  Google Scholar 

  5. Lan F, Yang Z, Qi L, Gao X, Shi Z (2014) Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt Lett 39(7):1709–1712

    PubMed  Google Scholar 

  6. Lv JT, Zhou M, Gu QC, Jiang XX, Ying Y, Si GY (2019) Metamaterial lensing devices. Molecules 24:2460

    CAS  PubMed Central  Google Scholar 

  7. Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356–3358

    PubMed  Google Scholar 

  8. Zhang S, Park YS, Li JS, Lu XC, Zhang WL, Zhang X (2009) Negative refractive index in chiral metamaterials. Phys Rev Lett 102:023901

    PubMed  Google Scholar 

  9. Iwaszczuk K, Strikwerda AC, Fan K, Fan KB, Zhang X, Averitt RD, Jepsen PU (2012) Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express 20(1):635–643

    CAS  PubMed  Google Scholar 

  10. Liu FL, Wang Y, Bai Y, Yu J (2019) Study on stealth characteristics of metamaterials based on simulated annealing algorithm. Procedia Comput Sci 147:221–227

    Google Scholar 

  11. Fang N, Zhang X (2002) Imaging properties of a metamaterial superlens. Proceedings of the 2nd IEEE Conference on Nanotechnology. IEEE 225-228.

  12. Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith DR, Padilla WJ (2014) Terahertz compressive imaging with metamaterial spatial light modulators. Nature Photonics 8(8):605

    CAS  Google Scholar 

  13. Li HM (2018) Polarization-insensitive electromagnetically induced transparency based on ultra-thin coupling planar metamaterials. Opt Mater Express 8(2):348–355

    CAS  Google Scholar 

  14. Li HM, Xu YY (2019) Two transmission window plasmonically induced transparency with hybrid coupling mechanism. Opt Mater Express 9(5):2107–2116

    CAS  Google Scholar 

  15. Lee Y, Kim SJ, Park H, Lee B (2017) Metamaterials and metasurfaces for sensor applications. Sensors 17(8):1726

    Google Scholar 

  16. Vivek A, Shambavi K, Alex ZC (2019) A review: metamaterial sensors for material characterization. Sensor Rev 39(3):417–432

    Google Scholar 

  17. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    CAS  PubMed  Google Scholar 

  18. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):7181–7188

    PubMed  Google Scholar 

  19. Liu XL, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104(20):207403

    PubMed  Google Scholar 

  20. Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz B, Tavassolizadeh A, Chakravadhanula KVS, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23(45):5410–5414

    CAS  PubMed  Google Scholar 

  21. Li H, Yuan LH, Zhou B, Shen XP, Cheng Q, Cui TJ (2011) Ultrathin multiband gigahertz metamaterial absorbers. J Appl Phys 110(1):014909

    Google Scholar 

  22. Park JW, Tuong PV, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee YP (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691–9702

    PubMed  Google Scholar 

  23. He Y, Wu QN, Yan SN (2019) Multi-band terahertz absorber at 0.1-1 THz frequency based on ultra-thin metamaterial. Plasmonics 1-8

  24. Ding F, Cui YX, Ge XC, Jin Y, He SL (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506

    Google Scholar 

  25. Yu P, Besteiro LV, Huang YJ, Wu J, Fu L, Tan HH, Jagadish C, Wiederrecht GP, Govorov AO, Wang ZM (2019) Broadband metamaterial absorbers. Adv Optical Mater 7(3)

  26. Hao J, Yuan Y, Ran L, Jiang T, Kong JA, Chan CT, Zhou L (2007) Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 99:063908

    PubMed  Google Scholar 

  27. Chin JY, Lu M, Cui TJ (2008) Metamaterial polarizers by electric field-coupled resonators. Appl Phys Lett 93:251903

    Google Scholar 

  28. Sun W, He Q, Hao J, Zhou L (2011) A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 36:927–929

    PubMed  Google Scholar 

  29. Roberts A, Lin L (2012) Plasmonic quarter-wave plate. Opt Lett 37:1820–1822

    CAS  PubMed  Google Scholar 

  30. Jackson JD (1999) Classical electrodynamics, 3rd. (Wiley)

  31. Born M and Wolf E (1999) Principles of optics (Cambridge University)

  32. Wei Z, Cao Y, Fan Y, Yu X, Li H (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99:221907

    Google Scholar 

  33. Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2012) Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys Rev Lett 108:213905

    PubMed  Google Scholar 

  34. Liu ZC, Li ZC, Liu Z, Cheng H, Yu P, Liu WW, Tang CC, Gu CZ, Li JJ, Chen SQ, Tian JG (2015) High performance broadband circularly polarized beam deflector by mirror effect of multi-nanorod metasurfaces. Adv Funct Mater 25:5428–5434

    CAS  Google Scholar 

  35. Shi JH, Liu XC, Yu SW, Lv TT, Zhu Z, Ma HF, Cui TJ (2013) Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl Phys Lett 102:191905

    Google Scholar 

  36. Cheng YZ, Nie Y, Cheng ZZ, Wu L, Wang X, Gong RZ (2013) Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators. J ElectromagnWaves Appl. 27:1850–1858

    Google Scholar 

  37. Liu DY, Li MH, Zhai XM, Yao LF, Dong JF (2014) Enhanced asymmetric transmission due to Fabry-Perot-like cavity. Opt Express 22:11707–11712

    PubMed  Google Scholar 

  38. Huang XJ, Xiao B, Yang D, Yang HL (2015) Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial. Opt Commun 338:416–421

    CAS  Google Scholar 

  39. Wu L, Yang ZY, Cheng YZ, Zhao M, Gong RZ, Zheng Y, Duan J, Yuan XH (2014) Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl Phys Lett 103:021903

    Google Scholar 

  40. Wu L, Yang ZY, Cheng YZ, Gong RZ, Zhao M, Zheng Y, Duan J, Yuan X (2014) Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl Phys A Mater Sci Process 116:643–648

    CAS  Google Scholar 

  41. Liu DJ, Xiao ZY, Ma XL, Wang ZH (2015) Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking. Appl Phys Express 8:052001

    Google Scholar 

  42. Xiao ZY, Liu DJ, Ma XL, Wang ZH (2015) Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt Express 23:7053–7061

    CAS  PubMed  Google Scholar 

  43. Cheng H, Wei XY, Yu P, Li ZC, Liu Z, Li JJ, Chen SQ, Tian JG (2017) Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces. Appl Phys Lett 110(17):171903

    Google Scholar 

  44. Wu PC, Zhu WM, Shen ZX, Chong PHJ, Ser W, Tsai DP, Liu AQ (2017) Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv Opt Mater 5(7):1600938

    Google Scholar 

  45. Zhou YL, Cao XY, Gao J, Yang HH, Li SJ (2018) Reconfigurable metasurface for multiple functions: magnitude, polarization and phase modulation. Opt Express 26(22):29451–29459

    PubMed  Google Scholar 

  46. Li FX, Chen HY, He QT, Zhou Y, Zhang L, Weng XL, Lu HP, Deng LJ (2019) Design and implementation of metamaterial polarization converter with the reflection and transmission polarization conversion simultaneously. J Optics 21(4):045102

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61671238), Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYLX16_0368). This work also was supported by the China Scholarship Council under Grant No. 201806830017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongdiao Wen, Shaobin Liu or Fabrizio Frezza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Liu, S., Zhang, H. et al. A Multifunctional Integrated Design of Simultaneous Unity Absorption and Polarization Conversion. Plasmonics 15, 1141–1149 (2020). https://doi.org/10.1007/s11468-019-01078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01078-6

Keywords

Navigation