Skip to main content
Log in

Effect of central metal ions on interaction of Metal Phthalocyanines composites with chemical analytes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal Phthalocyanines (MPcs) undergo appreciable interaction mechanism with chemical analytes on account of their high sensitivity in terms of charge densities, optical and spectroscopic properties. In the present work, we aim to integrate the advantages of three MPcs with three different metal ions, similar functional group and a ligand attached to central metal ion to device chemresistor sensors. Four chemresistor devices were fabricated using permutation combinations of three MPcs; tetrasulfonic acid tetrasodium salt functionalized Nickel Phthalocyanine (NiPcS) and Copper Phtalocyanines (CuPcS) and Aluminium Phthalocyanine hydroxide (AlPcOH). The chemresistors were tested for surface-interface studies with an aromatic vapor benzene and strong oxidizing vapor bromine. For benzene, NiPcS–AlPcOH composite exhibited maximum sensitivity (≈ 2.73 ppm−1) and for bromine, CuPcS–AlPcOH composite shows highest sensitivity (≈ 72 ppm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data and code availability

Data will be made available on request.

References

  1. A.J. Li, V.K. Pal, K. Kannan, A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotoxicol. 3, 91–116 (2021)

    Article  Google Scholar 

  2. M.T. Smith, Advances in understanding benzene health effects and susceptibility. Annu. Rev. Public Health. Rev. Public Health 31, 133–148 (2010)

    Article  Google Scholar 

  3. I. Rana, S. Dahlberg, C. Steinmaus, L. Zhang, Benzene exposure and non-Hodgkin lymphoma:a systematic review and meta-analysis of human studies. Lancet Planet. Health 5, 633–643 (2021)

    Article  Google Scholar 

  4. S. Chaiklieng, P. Suggaravetsiri, H. Autrup, Risk assessment on benzene exposure among gasoline station workers. Int. J. Environ. Res. Public Health 16(14), 2545 (2019)

    Article  Google Scholar 

  5. T. Bratec, N. Kirchhübel, N. Baranovskaya, B. Laratte, O. Jolliet, L. Rikhvanov, P. Fantke, Environ. Sci. Pollut. Res.Pollut. Res. 26, 19814–19827 (2019)

    Article  Google Scholar 

  6. S. Shakil, J.X.M. Juncos, N. Mariappan, I. Zafar, A. Amudhan, A. Amudhan, D. Aishah, S. Siddiqui, S. Manzoor, C.M. Santana, W.K. Rumbeiha, S. Salim, A. Ahmad, S. Ahmad, Behavioral and neuronal effects of inhaled bromine gas: oxidative brain stem damage. Int. J. Mol. Sci. 22(12), 6316 (2021)

    Article  Google Scholar 

  7. Sushma, Bromine chloride: risk assessment, environmental, and health hazard, in Hazardous Gases: Risk Assessment on the Environment and Human Health. (Elsevier, 2021), pp.55–64

    Chapter  Google Scholar 

  8. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Study of interaction mechanism of metal phthalocyanines dispersed sol-gel glasses with chemical vapors. Sens. Actuators B 255(1), 1849–1868 (2018)

    Article  Google Scholar 

  9. D. Klyamer, D. Bonegardt, T. Basova, Fluoro-substituted metal phthalocyanines for active layers of chemical sensors. Chemosensors 9(6), 133 (2021)

    Article  Google Scholar 

  10. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Study of sensing mechanism of heterocyclic hazardous vapors with Metal Phthalocyanines. Dyes Pigm.Pigm. 216, 111328 (2023)

    Article  Google Scholar 

  11. J.W. Namgoong, H.M. Kim, S.H. Kim, S.B. Yuk, J. Choi, J.P. Kim, Synthesis and characterization of metal phthalocyanine bearing carboxylic acid anchoring groups for nanoparticle dispersion and their application to color filters. Dyes Pigm.Pigm. 184, 108737 (2021)

    Article  Google Scholar 

  12. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Influence of metals and substituent on interaction behaviour of metal phthalocyanines combinations with organic vapors. J. Mater. Sci. Mater. Electron. 34(6), 549 (2023)

    Article  Google Scholar 

  13. S.K. Tripathi, R. Ridhi, Semiconductor oxide nanomaterial, in Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors Applications, Fabrication and Commercialization Micro and Nano Technologies. (Elsevier, 2023), pp.41–74. https://doi.org/10.1016/B978-0-12-822837-1.00007-1

    Chapter  Google Scholar 

  14. R. Ridhi, A. Chouksey, S. Gautam, J.S. Rawat, P. Jha, Study of the effect of flow rate and decomposition temperature on sensing of ammonium nitrate by carbon nanotubes. Sens. Actuators B 334, 129658 (2021)

    Article  Google Scholar 

  15. P. Bata, A. Demjén, F. Notheisz, Á. Zsigmond, Comparative study of immobilized phthalocyanines in oxidative degradation. Open Catal. J. 5, 50–55 (2012)

    Article  Google Scholar 

  16. E. Blanco, D. Narayana Rao, F.J. Aranda, D.V.G.L.N. Rao, Dispersion of the nonlinear absorption of copper phthalocyanine in a silica xerogel matrix through the visible spectrum. J. Appl. Phys. 83, 3441–3443 (1998)

    Article  ADS  Google Scholar 

  17. E.M.A. Rauf, S. Hisaindee, J.P. Graham, M. Nawaz, Solvent effects on the absorption and fluorescence spectra of Cu(II)-phthalocyanine. J. Mol. Liq. 168, 102–109 (2012)

    Article  Google Scholar 

  18. M. Evyapan, A.D.F. Dunbar, Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Appl. Surf. Sci. 362, 191–201 (2016)

    Article  ADS  Google Scholar 

  19. T.V. Basova, A.K. Ray, Review: hybrid materials based on phthalocyanines and metal nanoparticles for chemiresistive and electrochemical sensors—a mini review. ECS J. Solid State Sci. Technol. 9, 061001 (2020)

    Article  ADS  Google Scholar 

  20. K.P. Madhuri, N.S. John, Metal phthalocyanines and their composites with carbon nanostructures for applications in energy generation and storage, in Design, Fabrication, and Characterization of Multifunctional Nanomaterials Micro and Nano Technologies. (Elsevier, 2022), pp.401–448

    Chapter  Google Scholar 

  21. Z. Yue, C. Ou, N. Ding, L. Tao, J. Zhao, J. Chen, Advances in metal phthalocyanine based carbon composites for electrocatalytic CO2 reduction. Chem Cat Chem 12(24), 6103–6130 (2020)

    Google Scholar 

  22. S. Freddi, C. Marzuoli, S. Pagliara, G. Dreraa, L. Sangaletti, Targeting biomarkers in the gas phase through a chemoresistive electronic nose based on graphene functionalized with metal phthalocyanines. RSC Adv. 13, 251–263 (2023)

    Article  ADS  Google Scholar 

  23. A. Pauly, S.S. Ali, C. Varenne, J. Brunet, E. Llobet, A.L. Ndiaye, Phthalocyanines and porphyrins/polyaniline composites (PANI/CuPctBu and PANI/TPPH2) as sensing materials for ammonia detection. Polymers (Basel) 14(5), 891 (2022)

    Article  Google Scholar 

  24. M.S. More, G. Bodkhe, F. Singh, B.N. Dole, T. Hianik, M.D. Shirsat, Chemiresistive sensor-based Metal Organic Framework-reduced Graphene Oxide (Cu-BTC@rGO) nanocomposite for the detection of Ammonia. In: The 2nd International Electronic Conference on Chemical Sensors and Analytical Chemistry session Materials for Chemical Sensing, MDPI (2023). https://doi.org/10.3390/CSAC2023-14882

  25. M. Nemakal, L.K. Sannegowda, Hybrid composites based on phthalocyanine and carbonaceous materials for sensing applications: a review. Int. J. Biosens. Bioelectron. 7(3), 84–89 (2021)

    Google Scholar 

  26. S.Y. Jeong, Y.K. Moon, J. Wang, J.H. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun.Commun. 14, 233 (2023)

    Article  ADS  Google Scholar 

  27. Y.K. Moon, S.Y. Jeong, Y.M. Jo, Y.K. Jo, Y.C. Kang, J.H. Lee, Highly selective detection of benzene and discrimination of volatile aromatic compounds using oxide chemiresistors with tunable Rh–TiO2 catalytic overlayers. Adv. Sci. 8(6), 2004078 (2021)

    Article  Google Scholar 

  28. R. Ridhi, S. Singh, G.S.S. Saini, S.K. Tripathi, Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapors. J. Phys. Chem. Solid 115, 119–126 (2018)

    Article  ADS  Google Scholar 

  29. R. Ridhi, J. Kang, G.S.S. Saini, S.K. Tripathi, Spectroscopic interaction studies of substituted and unsubstituted copper phthalocyanine with adsorbed organic vapors. AIP Conf. Proc. 1953(030172), 1–4 (2018)

    Google Scholar 

  30. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Comparison of interaction mechanisms of substituted and unsubstituted copper phthalocyanine thin films towards organic vapors. J. Basic Appl. Eng. Res. 5, 111–113 (2018)

    Google Scholar 

  31. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Sensing of organic vapors by sulfonated copper phthalocyanine salt thin films. Mater. Focus 6, 386–393 (2017)

    Article  Google Scholar 

  32. M.K.L. Coelho, D.N. Silva, A.C. Pereira, Development of electrochemical sensor based on carbonaceal and metal phthalocyanines materials for determination of ethinyl estradiol. Chemosensors 7(3), 32 (2019)

    Article  Google Scholar 

  33. J. Černý, L. Dokládalová, P. Horáková, A. Lyčka, T. Mikysek, F. Bureš, Preparation and characterization of novel double-decker rare-earth phthalocyanines substituted with 5-bromo-2-thienyl groups. Chem. Cent. J. 11, 31 (2017)

    Article  Google Scholar 

  34. T. Koczorowski, W. Szczolko, T. Goslinski, Physicochemical properties and catalytic applications of iron porphyrazines and phthalocyanines. Recent Prog. Organomet. Chem. (2017). https://doi.org/10.5772/68071

    Article  Google Scholar 

  35. A. Kumar, C. Varenne, A.L. Ndiaye, A. Pauly, M. Bouvet, J. Brunet, Improvement in metrological performances of phthalocyanine-based QCM sensors for BTX detection in air through substituent’s effect. Sens. Actuators, B Chem. 368, 132253 (2022)

    Article  Google Scholar 

  36. Y. Baygua, R. Capan, M. Erdogan, C. Ozkaya, Y. Acikbas, N. Kabay, Y. Gök, Synthesis, characterization and chemical sensor properties of a novel Zn(II) phthalocyanine containing 15-membered dioxa-dithia macrocycle moiety. Synth. Met. 280, 116870 (2021)

    Article  Google Scholar 

  37. A.K. Sharma, A. Mahajan, S. Kumar, A.K. Debnath, D.K. Aswal, Tailoring of the chlorine sensing properties of substituted metal phthalocyanines non-covalently anchored on single-walled carbon nanotubes. RSC Adv. 8(57), 32719–32730 (2018)

    Article  ADS  Google Scholar 

  38. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Sensing of volatile organic compounds by copper phthalocyanine thin films. Mater. Res. Express 4(025102), 1–13 (2017)

    Google Scholar 

  39. M.S. Hossain, A. Takshi, Toward chemical sensing: an electrochemical study of the selectivity trend of metal phthalocyanines. In: Proceedings, Organic and Hybrid Sensors and Bioelectronics XV, vol. 12210, p. 1221003 (2022)

  40. L. Buimaga-Iarinca, C. Morari, Translation of metal-phthalocyanines adsorbed on Au (111): from Van der Waals interaction to strong electronic correlation. Sci. Rep. 8, 12728 (2018)

    Article  ADS  Google Scholar 

  41. F. Rücker, D. Waas, B. Büchner, M. Knupfer, D.R.T. Zahn, F. Haidu, T. Hahn, J. Kortus, Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces. Beilstein J. Nanotechnol. J. Nanotechnol. 8, 1601–1615 (2017)

    Article  Google Scholar 

  42. D.E. Nevonen, L.S. Ferch, B.R. Schrage, V.N. Nemykin, Charge-Transfer spectroscopy of bisaxially coordinated iron(II) phthalocyanines through the prism of the lever’s EL parameters scale, MCD spectroscopy, and TDDFT calculations. Inorg. Chem.. Chem. 61, 8250–8266 (2022)

    Article  Google Scholar 

  43. R. Ridhi, S. Neeru, G.S.S. Gautam, S.K. Saini, J.S. Tripathi, P.J. Rawat, Study of the effect of orbital on interaction behaviour of SWCNT- metal phthalocyanines composites with ammonia gas. Sens. Actuators B: Chem. 337, 129767 (2021)

    Article  Google Scholar 

  44. D. Klyamer, W. Shao, P. Krasnov, A. Sukhikh, S. Dorovskikh, P. Popovetskiy, X. Li, T. Basova, Cobalt and iron phthalocyanine derivatives: effect of substituents on the structure of thin films and their sensor response to nitric oxide. Biosensors 13(4), 484 (2023)

    Article  Google Scholar 

  45. W. Jiang, X. Chen, T. Wang, B. Li, M. Zeng, J. Yang, N. Hu, Y. Su, Z. Zhou, Z. Yang, Enhancing room-temperature NO2 gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material. RSC Adv. 11(10), 5618–5628 (2021)

    Article  ADS  Google Scholar 

  46. H. Peisert, F. Petraki, T. Chassé, Charge transfer between transition metal phthalocyanines and metal substrates: the role of the transition metal. J. Electron Spectrosc. Relat. Phenom.Spectrosc. Relat. Phenom. 204, 49–60 (2015)

    Article  Google Scholar 

  47. R. Ridhi, S. Sachdeva, G.S.S. Saini, S.K. Tripathi, Sensing response of copper phthalocyanine salt dispersed glass with organic vapors. AIP Conf. Proc. 1728, 020290 (2016)

    Article  Google Scholar 

  48. M. Evyapan, B. Kadem, T.V. Basova, I.V. Yushina, A.K. Hassan, Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sens. Actuat. B- Chem. 236, 605–613 (2016)

    Article  Google Scholar 

  49. S.K. Tripathi, J. Kaur, R. Ridhi, K. Sharma, R. Kaur, Radiation induced effects on properties of semiconducting nanomaterials. Solid State Phenom. 239, 1–36 (2015)

    Article  Google Scholar 

  50. R. Ridhi, G.S.S. Saini, S.K. Tripathi, Study of the effect of methanol vapors on copper phthalocyanine salt sol-gel glass. J. Basic Appl. Eng. Res. 13, 47–49 (2014)

    Google Scholar 

  51. R. Ridhi, I. Gawri, S.J. Abbas, G.S.S. Saini, S.K. Tripathi, Chemical sensing of copper phthalocyanine sol-gel glass through organic vapors. AIP Conf. Proc. 1661, 110015 (2015)

    Article  Google Scholar 

  52. V.B. Mernov, V.A. Domnin, Effect of structural defects and adsorbates on the ballistic conductivity of carbon nanotubes. Russ. J. Phys. Chem. B 17, 215–221 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. R. Ridhi is thankful to Department of Science and Technology, Inspire for providing grant for this work and SAIF Department, Panjab University Chandigarh for providing necessary facilities and technical support for the work.

Funding

Department of Science and Technology, DST, New Delhi, India, DST Inspire, R Ridhi.

Author information

Authors and Affiliations

Authors

Contributions

Dr. R. Ridhi: Conceptualization, Methodology, Investigation, Formal analysis, Writing- Original draft preparation. Prof. G.S.S. Saini: Conceptualization, Validation, Supervision, Writing Review and Editing. Prof. S.K. Tripathi: Conceptualization, Validation, Supervision, Writing Review and Editing.

Corresponding authors

Correspondence to R. Ridhi or S. K. Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridhi, R., Saini, G.S.S. & Tripathi, S.K. Effect of central metal ions on interaction of Metal Phthalocyanines composites with chemical analytes. Appl. Phys. A 130, 359 (2024). https://doi.org/10.1007/s00339-024-07502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07502-x

Keywords

Navigation