Skip to main content

Modification of Electrode Surfaces with Metallo Phthalocyanine Nanomaterial Hybrids

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

The chapter reviews an electrocatalytic behavior of mononuclear metallophthalocyanines (MPcs) when combined with various nanomaterials. In addition, the chapter presents electrode modification using the least studied, binuclear phthalocyanines alone or in the presence of nanomaterials. The nanomaterials included are carbon nanotubes, metal nanoparticles, and semiconductor quantum dots. Different methods of electrode modification using MPc complexes in the presence of nanomaterials are presented. Methods of characterization of the modified electrodes, such as different types of microscopy, voltammetry, and X-ray photoelectron spectroscopy are presented. The chapter contains tables listing the reported electrode modification methods using MPcs in the presence on nanomaterials, and analytes detected on these electrodes. The chapter contains 149 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

BiPc:

Binuclear phthalocyanine

BPPGE:

Basal plane pyrolytic graphite electrode

CNT:

Carbon nanotube

CPE:

Carbon paste electrode

CV:

Cyclic voltammetry

DDAB:

Didodecyldimethylammonium bromide

DEAET:

Diethylaminoethanol

DMAET:

Dimethylaminoethanol

EPPGE:

Edge plane pyrolytic graphite electrode

GCE:

Glassy carbon electrode

GO:

Graphene oxide

GOD:

Glucose oxidase

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MAPc:

Tris(benzyl-mercapto)-monoaminophthalocyanine

MCPc:

Tris(benzyl-mercapto)-mono(carboxy phenoxy)-phthalocyanine

MIP:

Molecular imprinted polymer

MPS:

Mercaptopropyl-silica

MWCNT:

Multiwalled carbon nanotubes

OBSPc:

Octabutylsuphonyl phthalocyanine

OCPc:

Octacarboxy phthalocyanine

ODPc:

Octadecylphthalocyanine

ODTPc:

Octakis(decylthio) phthalocyanine

OHETPc:

Octa(hydroxyethylthio) pthalocyanine

OMC:

Ordered mesoporous carbon

oPD:

O-phenylenediamine

PoPD:

Poly(o-phenylenediamine)

OPhTPc:

Octakis(phenylthio) phthalocyanine

ORR:

Oxygen reduction reaction

Pc:

Phthalocyanine

PAMAN:

Poly(amido amine)

PEDOT:

Poly(3,4-ethylenedioxytheophene)

PPy:

Poly (pyrrole)

QCA:

Quinoxaline-2-carboxylic acid

QD:

Quantum dots

rGO:

Reduced graphene oxide

SAM:

Self-assembled monolayer

SECM:

Scanning electrochemical microscope

SEM:

Scanning electron microscope

SPE:

Screen-printed electrode

SWCNT:

Single-walled carbon nanotubes

TAPc:

Tetraamino phthalocyanine

TCPc:

Tetracarboxy phthalocyanine

TEM:

Transmission electron microscope

TOBPc:

2,(3)-tetra-(4-oxo-benzamide) phthalocyanine

TPPc:

2,9,16,23-tetra-iso-pentyloxyphthalocyanine

TSPc:

Tetrasulphophthalocyanine

TtBPc:

Tetra-tert-butylphthalocyanine

UME:

Ultramicro electrode

XPS:

X-ray photoelectron spectroscopy

References

  1. Nyokong T (2006) N4-macrocyclic metal complexes. In: Zagal JH, Bedioui F, Dodelet JP (eds) Springer, New York, pp 315–347

    Google Scholar 

  2. Wang GL, Zhu XY, Jiao HJ, Dong YM, Li ZJ (2012) Ultrasensitive and dual functional colorimetric sensors for mercury(II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 31:337–342

    Article  Google Scholar 

  3. Ganguly A, Trinh P, Ramanujachary KV, Ahmad T, Mugweru A, Ganguli AK (2011) Reverse micellar based synthesis of ultrafine MgO nanoparticles (8–10 nm): characterization and catalytic properties. J Coll Int Sci 353:137–142

    Article  CAS  Google Scholar 

  4. Katz E, Wilner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    Article  CAS  Google Scholar 

  5. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  6. Ozoemena KI, Westbroek P, Nyokong T (2001) Long-term stability of a gold electrode modified with a self-assembled monolayer of Octabutylthiophthalocyaninato-cobalt(II) towards L-cysteine detection. Electrochem Commun 3:529–534

    Google Scholar 

  7. Mashazi P, Westbroek P, Ozoemena KI, Nyokong T (2007) Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode. Electrochim Acta 53:1858–1869

    Article  CAS  Google Scholar 

  8. Akinbulu A, Nyokong T (2010) Fabrication and characterization of single walled carbon nanotubes-iron phthalocyanine nano-composite: surface properties and electron transport dynamics of its self assembled monolayer film. New J Chem 34:2875–2886

    Article  CAS  Google Scholar 

  9. Delamar M, Hitmi R, Pinson J, Savéant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884

    Article  CAS  Google Scholar 

  10. Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant JM (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207

    Article  CAS  Google Scholar 

  11. Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 13:6805–6813

    Article  CAS  Google Scholar 

  12. Mashazi P, Nyokong T (2010) Electrocatalytic studies of covalently immobilized metal tetra-amino phthalocyanines onto derivatized, screen-printed gold electrodes. Microchim Acta 171:321–332

    Google Scholar 

  13. Stewart MP, Maya F, Kosynkin DV, Dirk SM, Stapleton JJ, McGuiness CL, Allara DL, Tour JM (2004) Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. J Am Chem Soc 126:370–378

    Article  CAS  Google Scholar 

  14. Paulik MG, Brooksby PA, Abell AD, Downard A (2007) Grafting aryl diazonium cations to polycrystalline gold: insights into film structure using gold oxide reduction, redox probe electrochemistry, and contact angle behavior. J Phys Chem C 111:7808–7815

    Google Scholar 

  15. Bélanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40:3995–4048

    Google Scholar 

  16. Coates M, Nyokong T (2012) Electrode modification using iron metallophthalocyanine through click chemistry and axial ligation with pyridine. J Electroanal Chem 687:111–116

    Article  CAS  Google Scholar 

  17. Coates M, Nyokong T (2013) Characterization of glassy carbon electrodes modified with carbon nanotubes and iron phthalocyanine through grafting and click chemistry. Electrochim Acta 91:158–165

    Article  CAS  Google Scholar 

  18. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Google Scholar 

  19. Lutz JF, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv Drug Deliv Rev 60:958–970

    Article  CAS  Google Scholar 

  20. Orgueira HA, Fokas D, Isome Y, Chan PCM, Baldino CM (2005) Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahed Lett 46:2911–2914

    Google Scholar 

  21. Hotha S, Anegundi RI, Natu AA (2005) Expedient synthesis of 1,2,3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahed Lett 46:4585–4588

    Google Scholar 

  22. Collman JP, Devaraj NK, Eberspacher TPA, Chidsey CED (2006) Mixed azide-terminated monolayers: a platform for modifying electrode surfaces. Langmuir 22:2457–2464

    Article  CAS  Google Scholar 

  23. Yoo BK, Joo SW (2007) In situ Raman monitoring triazole formation from self-assembled monolayers of 1,4-diethynylbenzene on Ag and Au surfaces via “click” cyclization. J Colloid Interf Sci 311:491–496

    Google Scholar 

  24. Lummerstorfer T, Hoffmann H (2004) Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J Phys Chem B 108:3963–3966

    Article  CAS  Google Scholar 

  25. Nxele SR, Mashazi P, Nyokong T (2015) Electrode modification using alkynyl substituted Fe(II) Phthalocyanine via electrografting and click chemistry for electrocatalysis. Electroanalysis 27:2468–2478

    Article  CAS  Google Scholar 

  26. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  28. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford

    Google Scholar 

  29. Macdonald JR, Johnson WB, Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley, Hoboken, pp 1–26

    Google Scholar 

  30. Fu-Ming Wang F, John Rick J (2014) Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries. Solid State Ionics 268:31–34

    Article  Google Scholar 

  31. Raistrick ID, Franceschetti DR, Macdonald JR (2005) In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley, Hoboken, pp 27–128

    Google Scholar 

  32. Bonanos N, Steele BCH, Butler EP, Macdonald JR, Johnson WB, Worrel WL, McKubre MCH, Macdonald DD, Barsoukov E (2005) In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment, and applications, 2nd edn, Wiley, Hoboken, pp 205–538

    Google Scholar 

  33. Sánchez-Vergara M, Islas-Bernal I, Rivera M, Ortíz-Rebollo A, Alvarez-Bada J (2007) Formation and characterization of thin films from phthalocyanine complexes: an electrosynthesis study using the atomic-force microscope. Thin Solid Films 515:5374–5380

    Article  Google Scholar 

  34. Geraldo D, Togo C, Limson J, Nyokong T (2008) Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim Acta 53:8051–8057

    Article  CAS  Google Scholar 

  35. Maringa A, Nyokong T (2014) The influence of gold nanoparticles on the electroactivity of nickel tetrasulfonated phthalocyanine. J Porphyrins Phthalocyanines 18:642–651

    Article  CAS  Google Scholar 

  36. Wittstock G, Burchardt M, Pust SE (2007) In: Bhushan B, Fuchs H (eds) Applied scanning probe methods VII: biomimetics and industrial applications. Springer, Berlin, pp 259–299

    Google Scholar 

  37. Mirkin MV, Horrocks BR (2000) Electroanalytical measurements using the scanning electrochemical microscope. Anal Chim Acta 406:119–146

    Article  CAS  Google Scholar 

  38. Nagy G, Nagy L (2000) Scanning electrochemical microscopy: a new way of making electrochemical experiments. J Anal Chem 366:735–744

    Article  CAS  Google Scholar 

  39. Coates M, Griveau S, Nyokong T, Bedioui F (2011) Micro electrochemical patterning of gold surfaces using 4-azidobenzenediazoinium and scanning electrochemical microscopy. Electrochem Comm 13:150–153

    Google Scholar 

  40. Bollo S, Yáňez C, Sturm J, Núňez-Vergara L, Squella JA (2003) Cyclic voltammetric and scanning electrochemical microscopic study of thiolated β-cyclodextrin adsorbed on a gold electrode. Langmuir 19:3365–3370

    Google Scholar 

  41. Cougnon C, Gohier F, Bélanger D, Mauzeroll J (2009) In situ formation of diazonium salts from nitro precursors for scanning electrochemical microscopy patterning of surfaces. Angew Chem Int 48:4006–4008

    Google Scholar 

  42. Matrab T, Combellas C, Kanoufi F (2008) Scanning electrochemical microscopy for the direct patterning of a gold surface with organic moieties derived from iodonium salt. Electrochem Commun 10:1230–1234

    Article  CAS  Google Scholar 

  43. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, Chichester

    Book  Google Scholar 

  44. Boyd DC, Haasch RT, Mantell DR, Schulze RK, Evans JF, Gladfelter WL (1989) Organometallic azides as precursors for aluminum nitride thin films. Chem Mater 1:119–124

    Google Scholar 

  45. Schulze RK, Boyd DC, Evans JF, Gladfelter WL (1990) A variable temperature X-ray photoelectron spectroscopic study of the surface conversion of diethylaluminum azide to AlN. J Vac Sci Technol A 8:2338–2343

    Article  CAS  Google Scholar 

  46. Coates M, Nyokong T (2013) X-ray photoelectron spectroscopy analysis of the effect of alkyl-andarylthio substituents on manganese phthalocyanines for self-assembled monolayer formation on gold. Electrochem Commun 31:104–107

    Article  CAS  Google Scholar 

  47. Liu L, Guo LP, Bo XJ, Bai J, Cui XJ (2010) Electrochemical sensors based on binuclear cobalt phthalocyanine/surfactant/ordered mesoporous carbon composite electrode. Anal Chim Acta 673:88–94

    Article  CAS  Google Scholar 

  48. Hu X, Xia D, Zhang L, Zhang J (2013) High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. J Power Sour 231:91–96

    Article  CAS  Google Scholar 

  49. Yang Y, Fang G, Wang X, Pan M, Quin H, Liu H, Wang S (2014) Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine). Anal Chim Acta 806:136–143

    Article  CAS  Google Scholar 

  50. Li B, Zhou X, Wang X, Liu B, Li B (2014) Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sour 272:320–327

    Article  CAS  Google Scholar 

  51. Zhang R, Wang J, Xu B, Huang X, Xu Z, Zhaoz J (2012) Catalytic activity of binuclear transition metal phthalocyanines in electrolyte operation of lithium/thionyl chloride battery. J Electrochem Soc 159:H704–H710

    Article  CAS  Google Scholar 

  52. Chen X, Hu X, An L, Zhang N, Xia D, Zuo X, Wang X (2014) Electrocatalytic dechlorination of atrazine using binuclear iron phthalocyanine as electrocatalysts. Electrocatalysis 5:68–74

    Article  CAS  Google Scholar 

  53. Mehrdad E, Lever ABP (2003) Electroreduction of nitrite catalyzed by a dinuclear ruthenium phthalocyanine modified graphite electrode. J Porphyrins Phthalocyanine 7:529–539

    Article  Google Scholar 

  54. Ebadi M (2003) Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode. Can J Chem 81:161–168

    Article  CAS  Google Scholar 

  55. Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  56. Kongkan A, Kamat PV (2007) Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor—SWCNT suspensions. ACS Nano 1:13–21

    Article  Google Scholar 

  57. Chen L, Cheung CL, Ashby PD, Lieber CN (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731

    Google Scholar 

  58. Wu K, Fei J, Hu S (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotube. Anal Biochem 318:100–106

    Article  CAS  Google Scholar 

  59. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307

    Article  CAS  Google Scholar 

  60. Zagal J, Griveau S, Ozoemena KI, Nyokong T, Bedioui F (2009) Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis. J Nanosci Nanotech 9:2201–221

    Google Scholar 

  61. Ajayan PM (1999) Nanotubes from Carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  62. Odom TW, Huang JL, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809

    Article  CAS  Google Scholar 

  63. Swamy BEK, Venton BJ (2007) Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132:876–884

    Article  CAS  Google Scholar 

  64. Silva J, Griveau S, Richard C, Zagal J, Bedioui F (2007) Glassy carbon electrodes modified with single walled carbon nanotubes and cobalt phthalocyanine and nickel tetrasulfonated phthalocyanine: highly stable new hybrids with enhanced electrocatalytic performances. Electrochem Commun 9:1629–1634

    Article  Google Scholar 

  65. Siswana M, Ozoemena KI, Nyokong T (2008) Enhanced electrocatalytic detection of amitrole at basal plane pyrolytic graphite electrode modified with multi-walled carbon nanotubes and iron(II) tetra-aminophthalocyanine. Sensors 8:5096–5105

    Article  CAS  Google Scholar 

  66. Siswana M, Ozoemena KI, Nyokong T (2006) Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochim Acta 52:114–122

    Article  CAS  Google Scholar 

  67. Ozoemena KI, Nyokong T, Nkosi D, Chambrier I, Cook MJ (2007) Insights into the surface and redox properties of single-walled carbon nanotube—cobalt(II) tetra-aminophthalocyanine self-assembled on gold electrode. Electrochim Acta 52:4132–4143

    Google Scholar 

  68. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L (2010) Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta 659:144–150

    Article  CAS  Google Scholar 

  69. Mugadza T, Nyokong T (2011) Electrochemical, microscopic and spectroscopic characterization of benzene diamine functionalized single walled carbon nanotube-cobalt(II) tetracarboxy-phthalocyanine conjugates. J Colloid Interf Sci 354:437–447

    Google Scholar 

  70. Mugadza T, Nyokong T (2009) Synthesis and characterization of electrocatalytic conjugates oftetraamino cobalt(II) phthalocyanine and single wall carbon nanotubes. Electrochim Acta 54:6347–6353

    Article  CAS  Google Scholar 

  71. Mugadza T, Nyokong T (2010) Synthesis, characterization and the electrocatalytic behaviour of nickel(II) tetraamino-phthalocyanine chemically linked to single walled carbon nanotubes. Electrochim Acta 55:6049–6057

    Article  CAS  Google Scholar 

  72. Mugadza T, Nyokong T (2010) Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochim Acta 55:2606–2613

    Article  CAS  Google Scholar 

  73. Khene S, Nyokong T (2011) Electrooxidation of chlorophenols catalyzed by nickel octadecylphthalocyanine adsorbed on single-walled carbon nanotubes. Electroanalysis 23:1901–1911

    Article  CAS  Google Scholar 

  74. Mugadza T, Arslanoğlu Y, Nyokong T (2012) Characterization of 2,(3)-tetra-(4-oxo-benzamide) phthalocyaninato cobalt(II)—single walled carbon nanotube conjugate platforms and their use in electrocatalysis of amitrole. Electrochim Acta 68:44–51

    Article  CAS  Google Scholar 

  75. Agboola BO, Vilakazi SL, Ozoemena KI (2008) Electrochemistry at cobalt(II) tetrasulfophthalocyanine multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J Solid State Electrochem 13:1367–1379

    Article  Google Scholar 

  76. Siswana MP, Ozoemena KI, Geraldo DA, Nyokong T (2010) Nanostructured nickel(II) phthalocyanine–MWCNT as viable nanocomposite platform for electrocatalytic detection of asulam pesticide at neutral pH conditions. J Solid State Electrochem 14:1351–1358

    Article  CAS  Google Scholar 

  77. Pillay J, Ozoemena KI (2009) Phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: electron transfer dynamics and amplification of H2O2 response. Electrochim Acta 54:5053–5059

    Article  CAS  Google Scholar 

  78. Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) Electrochemical performance of carbon nanotube-supported cobaltphthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J Mol Catal A Chem 335:89–96

    Article  CAS  Google Scholar 

  79. Verma AL, Soxena S, Sani GSS, Gaur V, Jaim VK (2011) Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes. Thin Solid Films 519:8144–8148

    Google Scholar 

  80. Chauke VP, Antunes E, Nyokong T (2011) Comparative behavior of conjugates of tantalum phthalocyanines with gold nanoparticles or single walled carbon nanotubes towards bisphenol A electrocatalysis. J Electroanal Chem 661:1–7

    Article  CAS  Google Scholar 

  81. Mugadza T, Nyokong T (2011) Synthesis, characterization and application of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in electrocatalysis. Polyhedron 30:1820–1829

    Article  CAS  Google Scholar 

  82. Mashazi P, Mugadza T, Sosibo N, Mdluli P, Vilakazi S, Nyokong T (2011) The effects of carbon nanotubes on the electrocatalysis of hydrogen peroxide by metallo-phthalocyanines. Talanta 85:2202–2211

    Google Scholar 

  83. Wang B, Zhou X, Wu Y, Chen Z (2012) Lead phthalocyanine modified carbon nanotubes with enhanced NH3 sensing performance. Sens Actuators B 171:398–405

    Google Scholar 

  84. Nkosi D, Ozoemena KI (2008) Self-assembled nano-arrays of single-walled carbon nanotube–octa(hydroxyethylthio) phthalocyaninato iron(II) on gold surfaces: impacts of SWCNT and solution pH on electron transfer kinetics. Electrochim Acta 53:2782–2793

    Article  CAS  Google Scholar 

  85. Nkosi D, Ozoemena KI (2008) Interrogating the electrocatalytic properties of coordination self-assembled nanostructures of single-walled carbon nanotube—octa(hydroxyethylthio) phthalocyaninato iron(II) using thiocyanate as an analytical probe. J Electroanal Chem 621:304–313

    Article  CAS  Google Scholar 

  86. Ozoemena KI, Nkosi D, Pillay J (2008) Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: electrocatalytic detection of epinephrine. Electrochim Acta 53:2844–2851

    Article  CAS  Google Scholar 

  87. Mugadza T, Nyokong T (2011) Synthesis and electrocatalytic behavior of cobalt(II)-tris(benzyl-mercapto)-monoaminophthalocyanine—single walled carbon nanotube nanorods. Electrochim Acta 56:1995–2003

    Article  CAS  Google Scholar 

  88. Jubete E, Zelechowska K, Loaiza OA, Lamas PJ, Ochoteko E, Farmer KD, Roberts KB, Biernat JF (2011) Derivatization of SWCNTs with cobalt phthalocyanine residues and applications in screen printed electrodes for electrochemical detection of thiocholine. Electrochim Acta 56:3988–3995

    Google Scholar 

  89. Pillay J, Ozoemena KI (2007) Electrochemical properties of surface-confined films of single-walled carbon nanotubes functionalised with cobalt(II)tetra-aminophthalocyanine: electrocatalysis of sulfhydryl degradation products of V-type nerve agents. Electrochim Acta 52:3630–3640

    Article  CAS  Google Scholar 

  90. Mugadza T, Nyokong T (2010) Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt(II) tetracarboxyl-phthalocyanines for use in electrocatalysis. Synth Met 160(2089):2098

    Google Scholar 

  91. Agboola BO, Ozoemena KI, Nyokong T, Fukuda T, Kobayashi N (2010) Tuning the physico-electrochemical properties of novel cobalt(II) octa[(3,5-biscarboxylate)-phenoxy] phthalocyanine complex using phenylamine-functionalised SWCNTs. Carbon 48:763–773

    Article  CAS  Google Scholar 

  92. Lu W, Li N, Bao S, Chen W (2011) The coupling of metallophthalocyanine with carbon nanotubes to produce a nanomaterial-based catalyst for reaction-controlled interfacial catalysis. Carbon 49:1699–1709

    Article  CAS  Google Scholar 

  93. Zuo X, Zhang H, Li N (2012) An electrochemical biosensor for determination of ascorbic acid by cobalt(II) Phthalocyanine—multi-walled carbon nanotubes modified glassy carbon Electrode. Sens Actuators B 161:1074–1079

    Google Scholar 

  94. Moraes FC, Golinelli DLC, Mascaro CH, Machado SAS (2011) Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode. Sens Actuators B 148:492–497

    Article  Google Scholar 

  95. Fashedemi OO, Ozoemena KI (2011) A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: a potential electrocatalyst for the detection of dopamine. Sens Actuators B 160:7–16

    Google Scholar 

  96. Moraes FC, Mascaro LH, Machado SAS, Brett CMA (2009) Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 79:1406–1411

    Article  CAS  Google Scholar 

  97. Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresource Tech 102:5849–5854

    Google Scholar 

  98. Balan I, David LG, David V, Stoica AL, Mihailciuc C, Stamatin I, Ciucu AA (2011) Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. J Electroanal Chem 654:8–12

    Article  CAS  Google Scholar 

  99. Zhu X, Ai S, Chen Q, Yin H, Xu J (2009) Label-free electrochemical detection of Avian Influenza Virus genotype utilizing multi-walled carbon nanotubes—cobalt phthalocyanine—PAMAM nanocomposite modified glassy carbon electrode. Electrochem Commun 11:1543–1546

    Google Scholar 

  100. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonyl phthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55:6367–6375

    Article  CAS  Google Scholar 

  101. Cesarino I, Moraes FC, Ferreira TCR, Lanza MRV, Machado SAS (2012) Real-time electrochemical determination of phenolic compounds after benzene oxidation. J Electroanal Chem 672:34–39

    Article  CAS  Google Scholar 

  102. Lin CY, Balamuguran A, Lai YH, Ho KC (2010) A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation. Talanta 82:1905

    Google Scholar 

  103. Patrascu D, David L, David V, Mihailcuic CM, Stamatin L, Ciurea J, Naggy L, Naggy G, Ciucu AA (2011) Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron(II) phthalocyanine modified multi-wall carbon nanotubes paste electrode. Sens Actuators B 156:731–736

    Google Scholar 

  104. Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49:4839–4847

    Article  CAS  Google Scholar 

  105. Qiu B, Lin Z, Wang J, Chen Z, Chen G (2009) An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucoseoxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 78:76–80

    Article  CAS  Google Scholar 

  106. Mamuru SA, Ozoemena KI (2010) Iron(II) tetrakis(diaquaplatinum) octacarboxyphthalocyanine supported on multi-walled carbon nanotubes as effective electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochem Commun 12:1539–1542

    Article  CAS  Google Scholar 

  107. Gutierrez AP, Griveau S, Richard C, Pailleret A, Granados SG, Bedioui F (2009) Hybrid materials from carbon nanotubes, nickel tetrasulfonated phthalocyanine and thin polymer layers for the selective electrochemical activation of nitric oxide in solution. Electroanalysis 21:2303–2310

    Google Scholar 

  108. Khene S, Nyokong T (2012) Single walled carbon nanotubes functionalized with nickel phthalocyanines: effects of point of substitution and nature of functionalization on the electro-oxidation of 4-chlorophenol. J Porphyrins Phthalocyanines 16(1):130–139

    Google Scholar 

  109. Nyoni S, Mugadza T, Nyokong T (2014) Improved l-cysteine electrocatalysis through a sequential drop dry technique using multi-walled carbon nanotubes and cobalt tetraaminophthalocyanine conjugates. Electrochim Acta 128:32–40

    Article  CAS  Google Scholar 

  110. Kruusenberg I, Matisen L, Tammeveski K (2013) Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int J Electrochem Sci 8:1057–1066

    Google Scholar 

  111. Campidell S, Ballesteros B, Filoramo A, Díaz DD, de la Torre G, Torres T, Rahman GMA, Ehli C, Kiessling D, Werner F, Sgobba V, Guldi DM, Cioffi C, Prato M, Bourgoin JP (2008) Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J Am Chem Soc 130:11503–11509

    Google Scholar 

  112. Rogers B, Pennathur S, Adams J (2008) Nanotechnology: understanding small systems. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  113. Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Google Scholar 

  114. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Google Scholar 

  115. Bukowski T, Simmons JH (2002) Quantum dot research: current state and future prospects. Crit Rev Solid State Mater Sci 27:119–142

    Article  CAS  Google Scholar 

  116. Li J, Zou G, Hu X, Zhang X (2009) Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. J Electroanal Chem 625:88–91

    Article  CAS  Google Scholar 

  117. Wang Y, Lu J, Tang L, Chang H, Li J (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81:9710–9715

    Article  CAS  Google Scholar 

  118. Liu Q, Lu X, Li J, Yao X, Li J (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectrochem 22:3203–3209

    Article  CAS  Google Scholar 

  119. Chidawanyika W, Litwinski C, Antunes E, Nyokong T (2010) Photophysical study of a covalently linked quantum dot—low symmetry phthalocyanine conjugate. J Photochem Photobiol A Chem 212:27–35

    Google Scholar 

  120. Britton J, Antunes E, Nyokong T (2009) Fluorescence studies of quantum dots and zinc tetraamino phthalocyanine conjugates. Inorg Chem Commun 12:828–831

    Article  CAS  Google Scholar 

  121. Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A Chem 210:1–7

    Article  CAS  Google Scholar 

  122. D’Souza S, Antunes E, Nyokong T (2011) The interaction between thiol coated CdTe quantum dots and aminophenoxy mono substituted zinc phthalocyanines. Inorg Chim Acta 367:173–181

    Google Scholar 

  123. D’Souza S, Antunes E, Litwinski C, Nyokong T (2011) Photophysical effects of zinc monoamino phthalocyanines linked to mercaptopropionic-capped CdTe quantum dots. J Photochem Photobiol A 220:11–19

    Google Scholar 

  124. Adegoke O, Antunes E, Nyokong T (2013) Nanoconjugates of CdTe@ZnS quantum dots with cobalt tetraamino-phthalocyanine: characterization and implications for the fluorescence recognition of superoxide anion. J Photochem Photobiol A Chem 257:11–19

    Article  CAS  Google Scholar 

  125. Adegoke O, Nyokong T (2013) Fluorescence “turn on” probe for bromide ion using nanoconjugates of glutathione-capped CdTe@ZnS quantum dots with nickel tetraamino-phthalocyanine: characterization and size-dependent properties. J Photochem Photobiol A Chem 265:58–66

    Article  CAS  Google Scholar 

  126. Adegoke O, Khene S, Nyokong T (2013) Fluorescence “switch on” for conjugates of CdTe@ZnS quantum dots with Al, Ni and Zn tetraamino-phthalocyanine by hydrogen peroxide: characterization and investigation of their luminescence nanosensor response. J Fluorescence 23(5):963–974

    Article  CAS  Google Scholar 

  127. Khene S, Moeno S, Nyokong T (2011) Voltammetry and electrochemical impedance spectroscopy of gold electrodes modified with CdTe quantum dots and their conjugates with nickel tetraamino phthalocyanine. Polyhedron 30:2162–2170

    Google Scholar 

  128. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmiiller A, Gaponik N (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J Phys Chem B 109:1094–1100

    Article  CAS  Google Scholar 

  129. Khene S, Nyokong T (2011) Redox activity of CdTe quantum dots linked to nickel tetraaminophthalocyanine: effects of adsorption versus electrodeposition on the catalytic oxidation of chlorophenols. Microchem J 99:478–485

    Article  CAS  Google Scholar 

  130. Goodwin JA, Aslund TH, Tuley LR, Simmons JA, Kimble RJ, Creager S, Shetzline JA (2013) Ligand-assisted oxygen reduction reaction catalyzed by (nitro)cobalt porphyrins and phthalocyanines. ECS Trans 53:7–13

    Google Scholar 

  131. Zeng J, Sun S, Zhong J, Li X, Wang R, Wu L, Wang L, Fan Y (2015) Pd nanoparticles supported on copper phthalocyanine functionalized carbon nanotubes for enhanced formic acid electrooxidation. J Hydrogen Energy in press

    Google Scholar 

  132. Koodlur SL, Reddy KRV, Shivaprasad KH (2014) Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity. RSC Adv 4(22):11367–11374

    Google Scholar 

  133. Zhong J, Fan Y, Wang H, Wang R, Fan L, Shen X, Shi Z (2013) Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation. Electrochim Acta 113:653–660

    Google Scholar 

  134. Jeevagan JA, John SA (2013) Synthesis of non-peripheral amine substituted nickel(II) phthalocyanine capped gold nanoparticles and their immobilization on electrode for the electrocatalytic oxidation of hydrazine. RSC Adv 3(7):2256–2264

    Article  CAS  Google Scholar 

  135. Jeevagan JA, Raj AM, John SA (2013) Growth of gold nanorods in solution and on ITO and Au substrates using non-peripheral amine functionalized nickel(II) phthalocyanine capped gold nanoparticles as a seed solution, RSC Adv 3(3):870–878

    Google Scholar 

  136. Chen F, Li K, Li H (2013) Electrochemical performance of dual catalysts system based on nickel phthalocyanine and nano-manganese dioxide for O2 reduction. Synth React Inorg Metal Org Nano-Metal Chem 43(5):556–561

    Google Scholar 

  137. Maringa A, Mugadza T, Antunes E, Nyokong T (2013) Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92

    Google Scholar 

  138. Maringa A, Nyokong T (2014) Behavior of palladium nanoparticles in the absence or presence of cobalt tetraaminophthalocyanine for the electrooxidation of hydrazine. Electroanalysis 26:1068–1077

    Article  CAS  Google Scholar 

  139. Sun X, Li F, Shen G, Huang J, Wang X (2014) Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139:299–308

    Google Scholar 

  140. Alencar W, Crespilho F, Martins M, Zucolotto V, Oliveira O, Silva W (2009) Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC). Phys Chem Chem Phys 11:5086–5091

    Article  CAS  Google Scholar 

  141. Ahmed J, Yuan Y, Zhou L, Kim S (2012) Carbon supported cobalt oxide nanoparticles—iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. J Power Sour 208:170–175

    Article  CAS  Google Scholar 

  142. Pal M, Ganesan V (2012) Effect of gold nanoparticles on the electrocatalytic reduction of oxygen by silica encapsulated cobalt phthalocyanine. J Electroanal Chem 672:7–11

    Article  CAS  Google Scholar 

  143. Lokesh K, Shivaraj Y, Dayananda B, Chandra S (2009) Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide. Bioelectrochem 75:104–109

    Google Scholar 

  144. Guo J, Li H, He H, Chu D, Chen R (2011) CoPc- and CoPcF16-modified Ag nanoparticles as novel catalysts with tunable oxygen reduction activity in alkaline media. J Phys Chem C 115:8494–8502

    Google Scholar 

  145. Sannegowda L, Reddy K, Shivaprasad K (2014) Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity. RSC Adv 4:11367–11374

    Google Scholar 

  146. Zhong J, Fan Y, Wang H, Wang R, Fan L, Shen X, Shi Z (2013) Copper phthalocyanine functionalization of graphene nanosheets as support for platinum nanoparticles and their enhanced performance toward methanol oxidation. J Power Sour 242:208–215

    Google Scholar 

  147. Kaneko K, Furuya K, Hungria A, Hernandez-Garrido J, Midgley P, Onodera T, Kasai H, Yaguchi Y, Oikawa H, Nomura Y, Harada H, Ishihara T, Baba N (2009) Nanostructural characterization and catalytic analysis of hybridized platinum/phthalocyanine nanocomposites. J Electron Microsci 58:289–294

    Google Scholar 

  148. Jeevagan AJ, John SA (2013) Synthesis of non-peripheral amine substituted nickel(II) phthalocyanine capped gold nanoparticles and theirimmobilization on electrode for the electrocatalyticoxidation of hydrazine. RSC Adv 3:2256–2264

    Article  CAS  Google Scholar 

  149. Yen C, Shimizu K, Lin Y, Bailey F, Cheng I, Wai C (2007) Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energ Fuels 21:2268–2271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (NRF 62620) as well as Rhodes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nyokong, T., Khene, S. (2016). Modification of Electrode Surfaces with Metallo Phthalocyanine Nanomaterial Hybrids. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_6

Download citation

Publish with us

Policies and ethics