Skip to main content

Advertisement

Log in

Ex-situ synthesis, comprehensive characterization, and comprehensive properties of PVA film composites coated Spinel MgMn1.8Co0.2O4 nanoparticle

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

PVA/MgMn1.8Co0.2O4 composite films were prepared using the solution casting technique. Also, incorporating MgMn1.8Co0.2O4 nanoparticles into the polymer matrix influences the overall properties of the composition that enhances the physical, mechanical, and optical properties of PVA films to be applicable for various applications. The XRD analysis revealed a semi-crystalline structure for PVA samples proving the impact of the MgMn1.8Co0.2O4 nanoparticles on the phase purity of PVA showed a strong interaction between them. SEM investigations exhibit accumulated particles with different shapes with spherical grain sizes ranging between nanoscale and accumulated nano-sphere grains (40–100 nm). The EDX analysis successfully incorporated Mg, Mn, and Co elements into the composite material. The thermal stability, decomposition, and response were investigated for the obtained films, and (PVA)50(MgMn1.8Co0.2O4)50 showed the lowest residual mass with 6%. Mechanical testing showed the impact of MgMn1.8Co0.2O4 nanoparticle on the tensile strength, elongation at break, and Young's modulus, which lowered the ductility of PVA films, where (PVA)50 (MgMn1.8Co0.2O4)50 exhibits the higher Brittleness 4.75⤫10–3 (Mpa)−2. The magnetic hysteresis loops and magnetic saturation obtained from VSM exhibit that MgMn1.8Co0.2O4 promotes magnetic domains inside the PVA matrix, indicating that the particle size and nature of these nanoparticles affected the magnetic properties of PVA. Furthermore, optical characterization investigated the optical absorbance and Reflectance properties. The band gap for MgMn1.8Co0.2O4 was 2.5 eV, where PVA pure film was 4.6 eV, and the band gap lowered with an increase in MgMn1.8Co0.2O4 concentration till it reached 3 eV in case of the highest content of it. These findings contribute to a deeper understanding of this novel composite material's potential applications and performance optimizations in various fields, such as electronics, sensors, and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. K. Qiu, A.N. Netravali, A composting study of membrane-like polyvinyl alcohol based resins and nanocomposites. J. Polym. Environ. 21, 658–674 (2013). https://doi.org/10.1007/s10924-013-0584-0

    Article  Google Scholar 

  2. M.T. Razzak, D. Darwis, Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem. 62, 107–113 (2001)

    Article  ADS  Google Scholar 

  3. F.P. La Mantia, M. Morreale, Green composites: a brief review. Compos. Part A Appl. Sci. Manuf. 42, 579–588 (2011). https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  Google Scholar 

  4. S. Rashidi, A. Ataie, Structural and magnetic characteristics of PVA/CoFe2O4 nano-composites prepared via mechanical alloying method. Mater. Res. Bull. 80, 321–328 (2016). https://doi.org/10.1016/j.materresbull.2016.04.021

    Article  Google Scholar 

  5. C.C. Thong, D.C.L. Teo, C.K. Ng, Application of polyvinyl alcohol (PVA) in cement-based composite materials: a review of its engineering properties and microstructure behavior. Constr. Build. Mater. 107, 172–180 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.188

    Article  Google Scholar 

  6. M. Aslam, M.A. Kalyar, Z.A. Raza, Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 58, 2119–2132 (2018). https://doi.org/10.1002/pen.24855

    Article  Google Scholar 

  7. Poly (vinyl alcohol)-Chitosan Blends: Preparation, Mechanical and Physical Prop-erties. n.d.

  8. P.K. Panda, K. Sadeghi, J. Seo, Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: a review. Food Packag. Shelf Life (2022). https://doi.org/10.1016/j.fpsl.2022.100904

    Article  Google Scholar 

  9. M. Shekhirev, C.E. Shuck, A. Sarycheva, Y. Gogotsi, Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. (2021). https://doi.org/10.1016/j.pmatsci.2020.100757

    Article  Google Scholar 

  10. P. Wang, Y. Wang, L. Tong, Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci. Appl. (2013). https://doi.org/10.1038/lsa.2013.58

    Article  Google Scholar 

  11. A.M. Nejres, H.K. Ali, S.P. Behnam, Y.F. Mustafa, Potential effect of ammonium chloride on the optical physical properties of polyvinyl alcohol. System. Rev. Pharm. 11, 726–732 (2020). https://doi.org/10.31838/srp.2020.6.107

    Article  Google Scholar 

  12. Y. Liu, Y. Shen, X. Li, K. Yang, X. Chen, Y. Duan et al., Polyvinyl alcohol-waterborne blocked-based polyurethane composite surface sizing agents for enhancing mechanical performance of specialty paper. Eur. Polym. J. (2021). https://doi.org/10.1016/j.eurpolymj.2021.110736

    Article  Google Scholar 

  13. A. Das, T. Ringu, S. Ghosh, N. Pramanik, A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 80, 7247–7312 (2023). https://doi.org/10.1007/s00289-022-04443-4

    Article  Google Scholar 

  14. Y. Niu, J. Wu, Y. Kang, P. Sun, Z. Xiao, D. Zhao, Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.125722

    Article  Google Scholar 

  15. N. Jain, V.K. Singh, S. Chauhan, A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 26, 213–222 (2017). https://doi.org/10.1515/jmbm-2017-0027

    Article  Google Scholar 

  16. M.S. Sarwar, M.B.K. Niazi, Z. Jahan, T. Ahmad, A. Hussain, Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 184, 453–464 (2018). https://doi.org/10.1016/j.carbpol.2017.12.068

    Article  Google Scholar 

  17. A. Kruk, M. Schabikowski, M. Mitura-Nowak, T. Brylewski, Magnetic and electrical properties of Mn2CoO4 spinel. Phys. B Condens. Matter (2020). https://doi.org/10.1016/j.physb.2020.412402

    Article  Google Scholar 

  18. S. Shafiu, R. Topkaya, A. Baykal, M.S. Toprak, Facile synthesis of PVA-MnFe2O4 nanocomposite: Its magnetic investigation. Mater. Res. Bull. 48, 4066–4071 (2013). https://doi.org/10.1016/j.materresbull.2013.06.047

    Article  Google Scholar 

  19. N.M. Yousif, M.R. Balboul, Synthesis, structural and electrochemical performance of tetragonal spinel MgMn2O4 cathode materials promoted by 3d and 4 d transition element. Egypt. J. Chem. 65, 171–182 (2022). https://doi.org/10.21608/EJCHEM.2022.112719.5116

    Article  Google Scholar 

  20. Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan, P. Chen et al., Achieving Ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nanomicro Lett. (2022). https://doi.org/10.1007/s40820-022-00904-7

    Article  Google Scholar 

  21. P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014

    Article  Google Scholar 

  22. M. Javanbakht, High pressure phase evolution under hydrostatic pressure in a single imperfect crystal due to nanovoids. Materialia (Oxf) (2021). https://doi.org/10.1016/j.mtla.2021.101199

    Article  Google Scholar 

  23. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C Mater. 4, 9738–9749 (2016). https://doi.org/10.1039/c6tc03518c

    Article  Google Scholar 

  24. Q. Duc Truong, H. Kobayashi, K. Nayuki, Y. Sasaki, I. Honma, Atomic-scale observation of phase transition of MgMn2O4 cubic spi-nel upon the charging in Mg-ion battery. 2019.

  25. S.E. Shalaby, N.G. Balakocy, S.M.A. EL-Ola, M.K. Beliakova, Development of pilot scale system for production of nylon-6 fibers grafted with polydimethylaminoethylmathacrylate (PDMAEMA) for the application as ion exchange. Egypt. J. Chem. 62, 1713–1723 (2019). https://doi.org/10.21608/EJCHEM.2019.6778.1566

    Article  Google Scholar 

  26. Chee Ching Y, Rahman A, Yong Ching K, Liana Sukiman N, Hock Chuah C. Preparation and Characterization of Polyvinyl Alcohol-Based Composite Reinforced with Nanocellulose and Nanosilica. n.d.

  27. J. Pulit-Prociak, A. Staroń, P. Staroń, A. Chmielowiec-Korzeniowska, A. Drabik, L. Tymczyna et al., Preparation and of PVA-based compositions with embedded silver, copper and zinc oxide nanoparticles and assessment of their antibacterial properties. J Nanobiotechnology (2020). https://doi.org/10.1186/s12951-020-00702-6

    Article  Google Scholar 

  28. S.N. Bhattacharya, M.R. Kamal, R. Musa, R.K. Gupta, Polymeric Nanocomposites: Theory and Practice (Carl Hanser Publishers, 2008)

    Google Scholar 

  29. A. Hasimi, A. Stavropoulou, K.G. Papadokostaki, M. Sanopoulou, Transport of water in polyvinyl alcohol films: Effect of thermal treatment and chemical crosslinking. Eur. Polym. J. 44, 4098–4107 (2008). https://doi.org/10.1016/j.eurpolymj.2008.09.011

    Article  Google Scholar 

  30. D.S. Yu, T. Kuila, N.H. Kim, J.H. Lee, Enhanced properties of aryl diazonium salt-functionalized graphene/poly(vinyl alcohol) composites. Chem. Eng. J. 245, 311–322 (2014). https://doi.org/10.1016/j.cej.2014.02.025

    Article  Google Scholar 

  31. X. Jing, H. Li, H.Y. Mi, Y.J. Liu, P.Y. Feng, Y.M. Tan et al., Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens Actuators B Chem 295, 159–167 (2019). https://doi.org/10.1016/j.snb.2019.05.082

    Article  Google Scholar 

  32. X. Yang, L. Li, S. Shang, T.X. ming, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer (Guildf) 51, 3431–3435 (2010). https://doi.org/10.1016/j.polymer.2010.05.034

    Article  Google Scholar 

  33. H.S. Mahmood, N.F. Habubi, Structural, mechanical and magnetic properties of PVA-PVP: iron oxide nanocomposite. Appl. Phys. A Mater. Sci. Process. (2022). https://doi.org/10.1007/s00339-022-06107-6

    Article  Google Scholar 

  34. A.K. Sonker, N. Tiwari, R.K. Nagarale, V. Verma, Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J. Polym. Sci. A Polym. Chem. 54, 2515–2525 (2016). https://doi.org/10.1002/pola.28129

    Article  ADS  Google Scholar 

  35. A.K. Sonker, K. Rathore, R.K. Nagarale, V. Verma, Crosslinking of polyvinyl alcohol (PVA) and effect of crosslinker shape (Aliphatic and Aromatic) thereof. J. Polym. Environ. 26, 1782–1794 (2018). https://doi.org/10.1007/s10924-017-1077-3

    Article  Google Scholar 

  36. M. Heydari, A. Moheb, M. Ghiaci, M. Masoomi, Effect of cross-linking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane cross-linked with fumaric acid used for dehydration of isopropanol. J. Appl. Polym. Sci. 128, 1640–1651 (2013). https://doi.org/10.1002/app.38264

    Article  Google Scholar 

  37. K.K. Dey, P. Kumar, R.R. Yadav, A. Dhar, A.K. Srivastava, CuO nanoellipsoids for superior physicochemical response of biodegradable PVA. RSC Adv. 4, 10123–10132 (2014). https://doi.org/10.1039/c3ra46898d

    Article  ADS  Google Scholar 

  38. Assendert HE, Windle AH. Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. vol. 39. 1998.

  39. M.I. Voronova, O.V. Surov, S.S. Guseinov, V.P. Barannikov, A.G. Zakharov, Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr. Polym. 130, 440–447 (2015). https://doi.org/10.1016/j.carbpol.2015.05.032

    Article  Google Scholar 

  40. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A.R. Mutar, Synthesis, structural and optical characterization of mgo nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 26, 326–334 (2016). https://doi.org/10.1007/s10904-015-0321-3

    Article  Google Scholar 

  41. Z. Abdeen, S.G. Mohammad, M.S. Mahmoud, Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environ. Nanotechnol. Monit. Manag. 3, 1–9 (2015). https://doi.org/10.1016/j.enmm.2014.10.001

    Article  Google Scholar 

  42. É.C. de Oliveira, B.F. da Silva, P.F. Schopf, A.R. Viana, S.R. Mortari, M.R. Sagrillo et al., In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. J. Nanopart. Res. (2022). https://doi.org/10.1007/s11051-022-05529-w

    Article  Google Scholar 

  43. F.S. da Bruckmann, A.C. Pimentel, A.R. Viana, T.R. da Salles, L.M.F. Krause, S.R. Mortari et al., Synthesis, characterization and cytotoxicity evaluation of magnetic nanosilica in L929 cell line. Disciplinarum Scientia Ciências Naturais e Tecnológicas 21, 11–14 (2020). https://doi.org/10.37779/nt.v21i3.3631

    Article  Google Scholar 

  44. M.M. Hassan, N.A. Badway, A.M. Gamal, M.Y. Elnaggar, E.S.A. Hegazy, Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends. Nucl Instrum Methods Phys Res B 268, 1427–1434 (2010). https://doi.org/10.1016/j.nimb.2010.01.021

    Article  ADS  Google Scholar 

  45. W. Brostow, H.E.H. Lobland, M. Narkis, The concept of materials brittleness and its applications. Polym. Bull. 67, 1697–1707 (2011). https://doi.org/10.1007/s00289-011-0573-1

    Article  Google Scholar 

  46. J. Chen, Y. Gao, W. Liu, X. Shi, L. Li, Z. Wang et al., The influence of dehydration on the interfacial bonding, microstructure and mechanical properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon N Y 94, 845–855 (2015). https://doi.org/10.1016/j.carbon.2015.07.068

    Article  Google Scholar 

  47. J. Zhang, J. Wang, T. Lin, C.H. Wang, K. Ghorbani, J. Fang et al., Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers - Graphene oxide tethered with magnetic Fe3O4 nanoparticles. Chem. Eng. J. 237, 462–468 (2014). https://doi.org/10.1016/j.cej.2013.10.055

    Article  Google Scholar 

  48. F. D’Agata, F.A. Ruffinatti, S. Boschi, I. Stura, I. Rainero, O. Abollino et al., Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues. Molecules (2018). https://doi.org/10.3390/molecules23010009

    Article  Google Scholar 

  49. M.S.A. Darwish, L.M. Al-Harbi, A. Bakry, Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application. J. Therm. Anal. Calorim. 147, 11921–11930 (2022). https://doi.org/10.1007/s10973-022-11393-6

    Article  Google Scholar 

  50. P.N. Oliveira, R.D. Bini, G.S. Dias, P. Alcouffe, I.A. Santos, L. David et al., Magnetite nanoparticles with controlled sizes via thermal degradation of optimized PVA/Fe(III) complexes. J. Magn. Magn. Mater. 460, 381–390 (2018). https://doi.org/10.1016/j.jmmm.2018.04.005

    Article  ADS  Google Scholar 

  51. Ramos KB, Olivas Armendariz I, Chapa González C, Álvarez VA, García-Casillas PE. Cytotoxic Effect of Polyvinyl Alcohol-Magnetite Composite. https://doi.org/10.21203/rs.3.rs-2837957/v1.

  52. L. Chen, D. Niu, C.H. Lee, Y. Yao, K. Lui, K.M. Ho et al., Amphiphilic core-shell nanocomposite particles for enhanced magnetic resonance imaging. Part. Part. Syst. Charact. 33, 756–763 (2016). https://doi.org/10.1002/ppsc.201600095

    Article  Google Scholar 

  53. B. Mol, A.E. Beeran, P.S. Jayaram, P. Prakash, R.S. Jayasree, S. Thomas et al., Radio frequency plasma assisted surface modification of Fe3O4nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications. J. Mater. Sci. Mater. Med. (2021). https://doi.org/10.1007/s10856-021-06563-1

    Article  Google Scholar 

  54. A. Sankhla, R. Sharma, R.S. Yadav, D. Kashyap, S.L. Kothari, S. Kachhwaha, Biosynthesis and characterization of cadmium sulfide nanoparticles—an emphasis of zeta potential behavior due to capping. Mater. Chem. Phys. 170, 44–51 (2016). https://doi.org/10.1016/j.matchemphys.2015.12.017

    Article  Google Scholar 

  55. S.S. Alharthi, M.G. Althobaiti, A.A. Alkathiri, E.E. Ali, A. Badawi, Exploring the functional properties of PVP/PVA blend incorporated with non-stoichiometric SnS for optoelectronic devices. J. Taibah Univ. Sci. 16, 317–329 (2022). https://doi.org/10.1080/16583655.2022.2045766

    Article  Google Scholar 

  56. M.S. Shalaby, H.M. Hashem, N.M. Yousif, H.A. Zayed, A. Sotelo, L.A. Wahab, Preparation, structural characteristics and optical parameters of the synthesized nano-crystalline sulphur-doped Bi2Te2.85Se0.15 thermoelectric materials. J. Mater. Sci. Mater. Electron. 31, 10612–10627 (2020). https://doi.org/10.1007/s10854-020-03611-4

    Article  Google Scholar 

  57. E. Yassitepe, Z. Khalifa, G.H. Jaffari, C.S. Chou, S. Zulfiqar, M.I. Sarwar et al., A new route for the synthesis of CuIn0.5Ga0.5Se2 powder for solar cell applications. Powder Technol. 201, 27–31 (2010). https://doi.org/10.1016/j.powtec.2010.02.034

    Article  Google Scholar 

  58. F. Yakuphanoglu, Electrical characterization and device characterization of ZnO microring shaped films by sol-gel method. J. Alloys Compd. 507, 184–189 (2010). https://doi.org/10.1016/j.jallcom.2010.07.151

    Article  Google Scholar 

  59. S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18, 1041–1058 (2018). https://doi.org/10.1016/j.cap.2018.05.023

    Article  ADS  Google Scholar 

  60. S. Haider, Y. Al-Zeghayer, F.A. Ahmed Ali, A. Haider, A. Mahmood, W.A. Al-Masry et al., Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res. (2013). https://doi.org/10.1007/s10965-013-0105-9

    Article  Google Scholar 

  61. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015). https://doi.org/10.1007/s10854-015-3067-3

    Article  Google Scholar 

  62. O. Norfazlinayati, Z.A. Talib, H. Mohd Hamzah, N.G. Nik Salleh, A.H. Shaari, Optical characterization of PANI/functionalized-MWCNTs/PVA nanocomposites induced by gamma irradiation. Synth Methods (2021). https://doi.org/10.1016/j.synthmet.2021.116755

    Article  Google Scholar 

  63. M. Caglar, F. Yakuphanoglu, Structural and optical properties of copper doped ZnO films derived by sol-gel. Appl. Surf. Sci. 258, 3039–3044 (2012). https://doi.org/10.1016/j.apsusc.2011.11.033

    Article  ADS  Google Scholar 

  64. K. Tanaka, Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980)

    Article  ADS  Google Scholar 

  65. S.A. Fayek, S.M. El-Sayed, Optical properties of amorphous Ge28-xSe72Sb x thin films. NDT and E Int. 39, 39–44 (2006). https://doi.org/10.1016/j.ndteint.2005.06.002

    Article  Google Scholar 

  66. K. Omri, F. Alharbi, Microstructural properties and improvement in photoluminescence thermometry of Mn-activated single-phased Zn–SO–Mn phosphors. J. Mater. Sci. Mater. Electron. 32, 24229–24239 (2021). https://doi.org/10.1007/s10854-021-06888-1

    Article  Google Scholar 

  67. K. Omri, R. Lahouli, L. El Mir, Microstructure and electrical properties of silica-Zn2SiO4-Mn glass-ceramics as composite for optoelectronic devices. Results Phys. 12, 2141–2145 (2019). https://doi.org/10.1016/j.rinp.2019.02.015

    Article  ADS  Google Scholar 

  68. K. Omri, I. Najeh, N. Safa Mnefgui, S.G. Alonizan, Microstructure, AC conductivity and complex modulus analysis of Ca-ZnO nanoparticles for potential optoelectronic applications. Mater. Sci. Eng. B 297, 116738 (2023). https://doi.org/10.1016/j.mseb.2023.116738

    Article  Google Scholar 

  69. M. Roy, Formation and stability of nanosized, undercooled propagating intermediate melt during β → δ phase transformation in HMX nanocrystal. EPL 133, 56001 (2021). https://doi.org/10.1209/0295-5075/133/56001

    Article  ADS  Google Scholar 

  70. Z. Wang, D. Wang, Z. Lu, J. Liu, D. Xuan, Q. Liu, M. Chen, F. Luo, S. Li, Z. Zheng, Battery-type MnCo2O4@carbon nanofibers composites with mesoporous structure for high performance asymmetric supercapacitor. Diamond Relat. Mater. 119, 108586 (2021). https://doi.org/10.1016/j.diamond.2021.108586

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for Ass. Prof. Dr. Nashwa Yousif for her assitatnce and guidnce in the preparation stage.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Mohammed O. Alziyadi: measurements, Software, Validation, Writing - review & editing. Hadeer Gamal: Preparation of the sample, Experimental measurements, Writing - review & editing, M.S. Shalaby: Conceptualization, Methodology, Software, Data curation, Project administration, Writing - original draft, Writing - review & editing, Asma Alkabsh: Funding sources, measurements, Software. Not required

Corresponding author

Correspondence to M. S. Shalaby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alziyadi, M.O., Gamal, H., Alkabsh, A. et al. Ex-situ synthesis, comprehensive characterization, and comprehensive properties of PVA film composites coated Spinel MgMn1.8Co0.2O4 nanoparticle. Appl. Phys. A 130, 320 (2024). https://doi.org/10.1007/s00339-024-07481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07481-z

Keywords

Navigation