Skip to main content
Log in

Exploring the potential of graphene oxide frameworks as anode materials for Na-ion batteries applications: a density functional theory study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study explores the potential applications of graphene oxide frameworks (GOFs) in Na-ion batteries using density functional theory calculations. The GOF's graphene layers are linked by benzenediboronic acid pillars. Ab-initio molecular dynamics simulations demonstrate the thermal stability of the structures. The study calculates adsorption and barrier energy, storage capacity, and open-circuit voltage. The results predict the high mobility of Na in GOF due to the low energy barrier. The layered structure of GOF enables the intercalation of Na-ions. GOF has a Na storage capacity of 947 mAh/g in the form of Na21C36, which is higher than the reported values for graphite and some other two-dimensional carbon-based materials. The transition from semiconductor to metal, which is an essential condition for the diffusion of ions within the anode material, occurs after Na adsorption. Therefore, GOFs are a promising anode material with high efficiency for Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable as no new data were generated during this study.

References

  1. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/JA3091438/ASSET/IMAGES/MEDIUM/JA-2012-091438_0009.GIF

    Article  Google Scholar 

  2. N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2009). https://doi.org/10.1002/ADMA.200901079

    Article  Google Scholar 

  3. T. Insinna, E.N. Bassey, K. Märker, A. Collauto, A.L. Barra, C.P. Grey, Graphite anodes for Li-Ion batteries: an electron paramagnetic resonance investigation. Chem. Mater. 35, 5497–5511 (2023). https://doi.org/10.1021/ACS.CHEMMATER.3C00860/ASSET/IMAGES/LARGE/CM3C00860_0008.JPEG

    Article  Google Scholar 

  4. K. Sawai, Y. Iwakoshi, T. Ohzuku, Carbon materials for lithium-ion (shuttlecock) cells. Solid State Ion. 69, 273–283 (1994). https://doi.org/10.1016/0167-2738(94)90416-2

    Article  Google Scholar 

  5. E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008). https://doi.org/10.1021/NL800957B/SUPPL_FILE/NL800957B-FILE003.PDF

    Article  ADS  Google Scholar 

  6. D. Sui, L. Si, C. Li, Y. Yang, Y. Zhang, W. Yan, A comprehensive review of graphene-based anode materials for lithium-ion capacitors. Chemistry 3, 1215–1246 (2021). https://doi.org/10.3390/CHEMISTRY3040089

    Article  Google Scholar 

  7. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, A record-high ion storage capacity of T-graphene as two-dimensional anode material for Li-ion and Na-ion batteries. Appl. Surf. Sci. 527, 146849 (2020). https://doi.org/10.1016/J.APSUSC.2020.146849

    Article  Google Scholar 

  8. H. Lee, B. Jang, J. Koo, M. Park, H. Lee, J. Nam, Y. Kwon, Graphdiyne as a high-capacity lithium ion battery anode material. Appl. Phys. Lett. 103, 263904 (2013). https://doi.org/10.1063/1.4850236

    Article  ADS  Google Scholar 

  9. H. Dua, J. Deb, D. Paul, U. Sarkar, Twin-graphene as a Promising Anode Material for Na-Ion Rechargeable Batteries. ACS Appl Nano Mater. 4, 4912–4918 (2021). https://doi.org/10.1021/ACSANM.1C00460/SUPPL_FILE/AN1C00460_SI_001.PDF

    Article  Google Scholar 

  10. H.J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, H. Lee, Multilayer graphynes for lithium ion battery anode. J. Phys. Chem. C 117, 6919–6923 (2013). https://doi.org/10.1021/JP3105198/ASSET/IMAGES/MEDIUM/JP-2012-105198_0005.GIF

    Article  Google Scholar 

  11. C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries, Nature Reviews Materials 2018 3:4. 3 (2018) 1–11. https://doi.org/10.1038/natrevmats.2018.13.

  12. M. Binder, M. Mandl, S. Zaubitzer, M. Wohlfahrt-Mehrens, S. Passerini, O. Böse, M.A. Danzer, M. Marinaro, Cover feature: sodium cyclopentadienide as a new type of electrolyte for sodium batteries (ChemElectroChem 2/2021). ChemElectroChem 8, 272–272 (2021). https://doi.org/10.1002/CELC.202001559

    Article  Google Scholar 

  13. E. Goikolea, V. Palomares, S. Wang, I.R. de Larramendi, X. Guo, G. Wang, T. Rojo, Na-Ion Batteries—Approaching Old and New Challenges. Adv. Energy Mater. 10, 2002055 (2020). https://doi.org/10.1002/AENM.202002055

    Article  Google Scholar 

  14. Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012). https://doi.org/10.1021/NL3016957

    Article  ADS  Google Scholar 

  15. W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: status and future trends. EnergyChem. 1, 100012 (2019). https://doi.org/10.1016/J.ENCHEM.2019.100012

    Article  Google Scholar 

  16. Z. Xu, X. Lv, J. Li, J. Chen, Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594–25600 (2016). https://doi.org/10.1039/C6RA01870J

    Article  ADS  Google Scholar 

  17. A.H. Farokh Niaei, T. Hussain, M. Hankel, D.J. Searles, Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries, J Power Sources. 343 (2017) 354–363. https://doi.org/10.1016/J.JPOWSOUR.2017.01.027.

  18. J. Deb, R. Ahuja, U. Sarkar, Two-Dimensional Pentagraphyne as a High-Performance Anode Material for Li/Na-Ion Rechargeable Batteries. ACS Appl Nano Mater. 5, 10572–10582 (2022). https://doi.org/10.1021/ACSANM.2C01909/SUPPL_FILE/AN2C01909_SI_001.PDF

    Article  Google Scholar 

  19. R. Majidi, A.I. Ayesh, A density functional theory study of twin T-graphene as an anode material for Na-ion-based batteries. J. Appl. Phys. 132, 194301 (2022). https://doi.org/10.1063/5.0123013

    Article  ADS  Google Scholar 

  20. R. Majidi, A.I. Ayesh, Application of T4,4,4-graphyne for anode of Na-ion battery: first principle theoretical study. Mol. Simul. 49, 1044–1050 (2023). https://doi.org/10.1080/08927022.2023.2211170

    Article  Google Scholar 

  21. X. Bai, N. Wu, G. Yu, T. Li, Recent Advances in Anode Materials for Sodium-Ion Batteries, Inorganics 2023, Vol. 11, Page 289. 11 (2023) 289. https://doi.org/10.3390/INORGANICS11070289.

  22. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nature Communications 2014 5:1. 5 (2014) 1–10. https://doi.org/10.1038/ncomms5033.

  23. S.U.D. Shamim, M.K. Hossain, S.M. Hasan, A.A. Piya, M.S. Rahman, M.A. Hossain, F. Ahmed, Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries. Appl. Surf. Sci. 579, 152147 (2022). https://doi.org/10.1016/J.APSUSC.2021.152147

    Article  Google Scholar 

  24. S. Gadipelli, Z.X. Guo, Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015). https://doi.org/10.1016/J.PMATSCI.2014.10.004

    Article  Google Scholar 

  25. G. Srinivas, J.W. Burress, J. Ford, T. Yildirim, Porous graphene oxide frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 21, 11323–11329 (2011). https://doi.org/10.1039/C1JM11699A

    Article  Google Scholar 

  26. J.W. Burress, S. Gadipelli, J. Ford, J.M. Simmons, W. Zhou, T. Yildirim, Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49, 8902–8904 (2010). https://doi.org/10.1002/ANIE.201003328

    Article  Google Scholar 

  27. P. Zhu, B.G. Sumpter, V. Meunier, Electronic, thermal, and structural properties of graphene oxide frameworks. J. Phys. Chem. C 117, 8276–8281 (2013). https://doi.org/10.1021/JP401072Z/ASSET/IMAGES/MEDIUM/JP-2013-01072Z_0006.GIF

    Article  Google Scholar 

  28. I. Skarmoutsos, E.N. Koukaras, E. Klontzas, A computational study on phenyldiboronic acid-pillared graphene oxide frameworks for gas storage and separation. ACS Appl Nano Mater. 5, 9286–9297 (2022). https://doi.org/10.1021/ACSANM.2C01617/ASSET/IMAGES/MEDIUM/AN2C01617_0011.GIF

    Article  Google Scholar 

  29. G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, I.A. Baburin, G. Seifert, R. Mysyk, A.V. Talyzin, Porous graphene oxide/diboronic acid materials: structure and hydrogen sorption. J. Phys. Chem. C 119, 27179–27191 (2015). https://doi.org/10.1021/ACS.JPCC.5B06402/ASSET/IMAGES/LARGE/JP-2015-064029_0014.JPEG

    Article  Google Scholar 

  30. Y. Chan, J.M. Hill, Hydrogen storage inside graphene-oxide frameworks. Nanotechnology 22, 305403 (2011). https://doi.org/10.1088/0957-4484/22/30/305403

    Article  Google Scholar 

  31. User’s manual of OpenMX Ver. 3.9, (n.d.). http://www.openmx-square.org/openmx_man3.9/index.html. Accessed 5 Oct 2022

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  33. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  Google Scholar 

  34. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  ADS  Google Scholar 

  35. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000). https://doi.org/10.1063/1.1323224

    Article  ADS  Google Scholar 

  36. M. Nasrollahpour, M. Vafaee, M.R. Hosseini, H. Iravani, Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries. Phys. Chem. Chem. Phys. 20, 29889–29895 (2018). https://doi.org/10.1039/C8CP04088E

    Article  Google Scholar 

  37. R. Majidi, A. Ramazani, T. Rabczuk, Electronic properties of transition metal embedded twin T-graphene: A density functional theory study. Physica E Low Dimens Syst Nanostruct. 133, 114806 (2021). https://doi.org/10.1016/J.PHYSE.2021.114806

    Article  Google Scholar 

  38. J. Hu, Y. Liu, N. Liu, J. Li, C. Ouyang, Theoretical prediction of T-graphene as a promising alkali-ion battery anode offering ultrahigh capacity. Phys. Chem. Chem. Phys. 22, 3281–3289 (2020). https://doi.org/10.1039/C9CP06099E

    Article  Google Scholar 

  39. C. Kittel, P. McEuen, Introduction to solid state physics, (n.d.) 692. https://www.wiley.com/en-ie/Kittel%27s+Introduction+to+Solid+State+Physics%2C+8th+Edition%2C+Global+Edition-p-9781119454168 (accessed December 1, 2023).

  40. T. Singh, J.R. Choudhuri, M.K. Rana, α-graphyne as a promising anode material for Na-ion batteries: a first-principles study. Nanotechnology 34, 045404 (2022). https://doi.org/10.1088/1361-6528/AC9A54

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.P. performed the computations and wrote the first draft of the manuscript. R.M., S.I. V, and H.R. S. completed the simulations, discussed the results, and contributed to the final manuscript.

Corresponding author

Correspondence to R. Majidi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymanirad, F., Majidi, R., Vishkayi, S.I. et al. Exploring the potential of graphene oxide frameworks as anode materials for Na-ion batteries applications: a density functional theory study. Appl. Phys. A 130, 318 (2024). https://doi.org/10.1007/s00339-024-07469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07469-9

Keywords

Navigation