Skip to main content
Log in

Fabrication of columnar orthorhombic AgTe via anomalous diffusion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the growth of columnar structures of orthorhombic AgTe by radio-frequency (RF) magnetron sputtering at room temperature. The structures were formed spontaneously by direct deposition of Te on Ag nanoparticles prepared by glancing angle deposition without exposure to air. Anomalous diffusion of Ag nanoparticles into the deposited Te led to the formation of columnar AgTe. The gaps in the columnar structure were filled with Te, which can be removed by sublimation. This is the first report on the preparation of orthorhombic AgTe by vapor deposition. The formation of columnar orthorhombic AgTe is attributed to the small grain size of the Ag nanoparticles, which prevents crystal nucleation of the stable Ag2Te phase, and the non-oxidized Ag-Te direct interface, which induces fast anomalous diffusion and a strong electrochemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. A.V. Kolobov, S.R. Elliott, Adv. Phys. 40, 625–684 (1991). https://doi.org/10.1080/00018739100101532

    Article  ADS  Google Scholar 

  2. K. Shimakawa, Electrical transport properties of glass, in Springer handbook of glass. (Springer, Berlin, 1991), pp.343–367

    Google Scholar 

  3. Y. Sakaguchi, H. Asaoka, M. Mitkova, Pure Appl. Chem. 91, 1821–1835 (2019). https://doi.org/10.1515/pac-2019-0217

    Article  Google Scholar 

  4. Y. Imanishi, S. Kida, T. Nakaoka, AIP Adv. 6, 075003 (2016). https://doi.org/10.1063/1.4958633

    Article  ADS  Google Scholar 

  5. D. Ielmini, R. Waser (eds.), Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications (Wiley, Weinheim, 2015)

    Google Scholar 

  6. M.-M. Jin, L. Cheng, Y. Li, S.-Y. Hu, K. Lu, J. Chen, N. Duan, Z.-R. Wang, Y.-X. Zhou, T.-C. Chang, X.-S. Miao, Nanotechnology 29, 385203 (2018). https://doi.org/10.1088/1361-6528/aacf84

    Article  ADS  Google Scholar 

  7. L. Goux, J. Radhakrishnan, A. Belmonte, T. Witters, W. Devulder, A. Redolfi, S. Kundu, M. Houssa, G.S. Kar, Faraday Discuss. 213, 67–85 (2019). https://doi.org/10.1039/C8FD00115D

    Article  ADS  Google Scholar 

  8. K.-H. Song, S.-W. Kim, J.-H. Seo, H.-Y. Lee, Thin Solid Films 517, 3958–3962 (2009). https://doi.org/10.1016/j.tsf.2009.01.128

    Article  ADS  Google Scholar 

  9. J.H. Han, K.-S. Jeong, M. Ahn, D.-H. Lim, W.J. Yang, S. Jong Park, M.-H. Cho, J. Mater. Chem. C. 5, 3973–3982 (2017). https://doi.org/10.1039/c6tc05412a

    Article  Google Scholar 

  10. P. Singh, A.P. Singh, J. Sharma, A. Kumar, M. Mishra, G. Gupta, A. Thakur, Phy. Rev. Appl. 10, 054070 (2018). https://doi.org/10.1103/physrevapplied.10.054070

    Article  ADS  Google Scholar 

  11. P. Singh, R. Kaur, P. Sharma, V. Sharma, A. Thakur, J. Mater. Sci. Mater. Electron. 29, 1042–1047 (2017). https://doi.org/10.1007/s10854-017-8004-1

    Article  Google Scholar 

  12. M. Frumar, T. Wagner, Curr. Opin. Solid State Mater. Sci. 7, 117–126 (2003). https://doi.org/10.1016/S1359-0286(03)00044-5

    Article  ADS  Google Scholar 

  13. V.V. Kharton, Solid state electrochemistry II (Wiley, Weinheim, 2011)

    Book  Google Scholar 

  14. T. Ohachi, T. Yamamoto, I. Taniguchi, J. Cryst. Growth 24, 576–580 (1974). https://doi.org/10.1016/0022-0248(74)90382-0

    Article  ADS  Google Scholar 

  15. T. Ohachi, I. Taniguchi, J. Cryst. Growth 40, 109–117 (1977). https://doi.org/10.1016/0022-0248(77)90035-5

    Article  ADS  Google Scholar 

  16. J.J. Hauser, J. Appl. Phys. 53, 3634–3638 (1982). https://doi.org/10.1063/1.331145

    Article  ADS  Google Scholar 

  17. B.C. Mohanty, S. Kasiviswanathan, Cryst. Res. Tech. 41, 59–63 (2006). https://doi.org/10.1002/crat.200410530

    Article  Google Scholar 

  18. T. Okabe, M. Nakagawa, J. Cryst. Growth 46, 504–510 (1979). https://doi.org/10.1016/0022-0248(79)90038-1

    Article  ADS  Google Scholar 

  19. S. Kasukabe, J. Cryst. Growth 65, 384–390 (1983). https://doi.org/10.1016/0022-0248(83)90078-7

    Article  ADS  Google Scholar 

  20. X. Wen, S. Wang, Y. Xie, X.Y. Li, S. Yang, J. Phys. Chem. B 109, 10100–10106 (2005). https://doi.org/10.1021/jp050126o

    Article  Google Scholar 

  21. Y. Imanishi, T. Nakaoka, Appl. Phys. A 124, 664 (2018). https://doi.org/10.1007/s00339-018-2099-y

    Article  ADS  Google Scholar 

  22. K. Nakaya, T. Nakaoka, Appl. Sci. Sci. 2, 1601 (2020). https://doi.org/10.1007/s42452-020-03406-

    Article  Google Scholar 

  23. E.H. Robinson, K.M. Dwyer, A.C. Koziel, A.Y. Nuriye, J.E. Macdonald, Nanoscale 12, 23036 (2020). https://doi.org/10.1039/d0nr06910h

    Article  Google Scholar 

  24. Y. Seto, M. Ohtsuka, J. Appl. Cryst. 55, 397 (2022). https://doi.org/10.1107/S1600576722000139

    Article  ADS  Google Scholar 

  25. L. Bindi, P.G. Spry, C. Cipriani, Am. Mineral. 89, 1043–1047 (2004). https://doi.org/10.2138/am-2004-0715

    Article  ADS  Google Scholar 

  26. L. Bindi, J. Alloys Compd. 473, 262–264 (2009). https://doi.org/10.1016/j.jallcom.2008.05.043

    Article  Google Scholar 

  27. J. Zhu, R. Pandey, J. Phys. Chem. Solids 129, 41–45 (2019). https://doi.org/10.1016/j.jpcs.2018.12.030

    Article  ADS  Google Scholar 

  28. I.T. Karakaya, W.T. Thompson, J. Phase Equilib. 12, 56–63 (1991). https://doi.org/10.1007/BF02663676

    Article  Google Scholar 

  29. M.V. Voronin, E.G. Osadchii, E.A. Brichkina, Phys. Chem. Miner. 44, 639–653 (2017). https://doi.org/10.1007/s00269-017-0889-y

    Article  ADS  Google Scholar 

  30. R.M. Honea, Am. Mineral. 49, 325–338 (1964)

    Google Scholar 

  31. H. Kwon, D. Bae, D. Won, H. Kim, G. Kim, J. Cho, H.J. Park, H. Baik, A. Jeong, C.-H. Lin, C.-Y. Chiang, C.-S. Ku, H. Yang, S. Cho, ACS Nano 15, 6540–6550 (2021). https://doi.org/10.1021/acsnano.0c09517

    Article  Google Scholar 

  32. Y. Liu, H. Chu, Y. Zhao, J. Phys. Chem. C 114, 8176–8183 (2010). https://doi.org/10.1021/jp1001644

    Article  Google Scholar 

  33. W. Kälin, J.R. Günter, J. Solid State Chem. 123, 391–397 (1996). https://doi.org/10.1006/jssc.1996.0194

    Article  ADS  Google Scholar 

  34. L. Bindi, F.N. Keutsch, Z. Kristallogr, Cryst. Mater. 233, 247–253 (2018). https://doi.org/10.1515/zkri-2017-2120

    Article  Google Scholar 

  35. X. Zhang, Z. Chen, S. Lin, B. Zhou, B. Gao, Y. Pei, ACS Energy Lett. 2, 2470–2477 (2017). https://doi.org/10.1021/acsenergylett.7b00813

    Article  Google Scholar 

  36. Y. Imanishi, H. Hayashi, T. Nakaoka, J. Mater. Sci. 53, 12254–12264 (2018). https://doi.org/10.1007/s10853-018-2493-z

    Article  ADS  Google Scholar 

  37. B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, E.M. Levin, J. Appl. Phys. 101, 053715 (2007). https://doi.org/10.1063/1.2645675

    Article  ADS  Google Scholar 

  38. W. Gierlotka, J. Alloys Compd. 485, 231–235 (2009). https://doi.org/10.1016/j.jallcom.2009.06.028

    Article  Google Scholar 

  39. J.H. Horton, C. Hardacre, C.J. Baddeley, G.D. Moggridge, R.M. Ormerod, R.M. Lambert, J. Phys. Condens. Matter 8, 707 (1996). https://doi.org/10.1088/0953-8984/8/6/011

    Article  ADS  Google Scholar 

  40. Q.X. Liu, C.X. Wang, N.S. Xu, G.W. Yang, Phys. Rev. B 72, 085417 (2005). https://doi.org/10.1103/PhysRevB.72.085417

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by MEXT KAKENHI Grant Numbers 22K04203, and Sophia University Special Grant for Academic Research. Part of this work was conducted at Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by "Nanotechnology Platform" of MEXT.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial, direct, and intellectual contributions to the work discussed in this manuscript. All authors discussed the data, revised the manuscript, and read and approved the final manuscript.

Corresponding author

Correspondence to Toshihiro Nakaoka.

Ethics declarations

Conflict of interests

We have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 853 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyoda, H., Yin, Y., Tsukamoto, K. et al. Fabrication of columnar orthorhombic AgTe via anomalous diffusion. Appl. Phys. A 130, 304 (2024). https://doi.org/10.1007/s00339-024-07463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07463-1

Keywords

Navigation