Skip to main content
Log in

Superparamagnetic Dy modified ZnFe2O4 magnetic nanophotocatalysts for the photocatalytic degradation of crystal violet pollutant

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study focuses on the development of superparamagnetic and multifunctional Dy doped ZnDyxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.03) ferrite using sol–gel auto-combustion (SG) technique to remove the crystal violet pollutant found in textile industry wastewater using the adsorption and photocatalysis processes. The pure phased spinel cubic crystal structure was achieved for the prepared ferrite nanoparticles, as confirmed through the XRD results. The calculated crystallite size employing the Scherrer formula by taking the high intensity (311) peak was in the range of 26–35 nm. FESEM pictures confirm the presence of spherically shaped grains with definite grain boundaries. With the increasing doping content of Dy, the band gap for the produced photocatalysts was decreased from 1.47 to 1.11 eV. We demonstrated that our prepared Dy doped zinc ferrite nanoparticles behave as a soft magnetic material based on the magnetic measurement data by exhibiting the hysteresis behaviour with low rentivity and coercivity. This indicates the tendency of zinc nanoparticles to exhibit superparamagnetic behaviour at ambient temperature under an external magnetic field. ZnDy0.03Fe1.97O4 (x = 0.03) sample exhibits greater reactivity with a discolouring rate of 92.30% as compared to the ZnFe2O4 degradation rate of 83.07% during 120 min of irradiation under the natural sunlight. Furthermore, the adsorption/photocatalytic activities are amplified as the content of the dopant (Dy) rises, suggesting that the dopants are crucial to the photocatalytic breakdown and the adsorption of crystal violet (CV) dye. Using the antibacterial analysis, it was noted that ZnFe2O4 (x = 0.00) shows the zone of inhibition (ZOI) for both the strains, Bacillus subtilis and Salmonella typhi. With all the excellent magnetic, adsorption, photocatalytic, and antibacterial behaviours, the multifunctional magnetic nanomaterials will be highly beneficial for environmental and biological usages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors (SK, RJ) agree that the data supporting the findings of this article is available inside the article and/or references thereof. It will only be made available upon request.

References

  1. V. Vinayagam, K.N. Palani, S. Ganesh, O.S. Kushwaha, A. Pugalenthi, Recent breakthroughs on the development of electrodeionization systems for toxic pollutants removal from water environment. Environ. Res. 24, 117549 (2023)

    Google Scholar 

  2. F.N. Chaudhry, M.F. Malik, Factors affecting water pollution: a review. J. Ecosyst. Ecogr 7, 225–231 (2017)

    Google Scholar 

  3. M.A. Hassaan, A. El Nemr, A. Hassaan, Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Eng. 1, 64–67 (2017)

    Google Scholar 

  4. V. Keerthana, A. Girigoswami, S. Jothika, D. Kavitha, A. Gopikrishna, T. Somanathan, K. Girigoswami, Synthesis, characterization and applications of GO–TiO2 nanocomposites in textile dye remediation, Iran. J. Sci. Technol. Trans. Sci. 46, 1149–1161 (2022). https://doi.org/10.1007/s40995-022-01337-y

    Article  Google Scholar 

  5. H. Ali, Biodegradation of synthetic dyes—a review. Water Air Soil Pollut. 213, 251–273 (2010)

    ADS  Google Scholar 

  6. S. Mani, R.N. Bharagava, Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev. Environ. Contam. Toxicol. 237, 71–104 (2016)

    Google Scholar 

  7. D.D. Tuan, N.H. Nguyen, N. Van Quang, Y.-K. Park, C.-H. Lin, S. Ghotekar, H. Wang, W.-H. Chen, Y.F. Yee, K.-Y.A. Lin, Interface-engineered cavity-structured cobalt oxide as a boosted activator for peroxymonosulfate to degrade environmental hormones in water: structural defects and oxygen vacancies-induced enhancement. J. Environ. Chem. Eng. 11, 110789 (2023)

    Google Scholar 

  8. S. Munir, M.F. Warsi, S. Zulfiqar, I. Ayman, S. Haider, I.A. Alsafari, P.O. Agboola, I. Shakir, Nickel ferrite/zinc oxide nanocomposite: investigating the photocatalytic and antibacterial properties. J. Saudi Chem. Soc. 25, 101388 (2021)

    Google Scholar 

  9. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 97, 111–128 (2021)

    Google Scholar 

  10. M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)

    Google Scholar 

  11. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 65, 201–222 (2018)

    Google Scholar 

  12. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Google Scholar 

  13. S. Shukla, R. Khan, A. Daverey, Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: a review. Environ. Technol. Innov. 24, 101924 (2021)

    Google Scholar 

  14. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total. Environ. 424, 1–10 (2012)

    ADS  Google Scholar 

  15. K.K. Chenab, B. Sohrabi, A. Jafari, S. Ramakrishna, Water treatment: functional nanomaterials and applications from adsorption to photodegradation. Mater. Today Chem. 16, 100262 (2020)

    Google Scholar 

  16. H.R. Sharma, K.M. Batoo, R. Neffati, P. Dhiman, S. Bhardwaj, P. Sharma, S. Hussain, I. Sharma, R. Goel, G. Kumar, Investigation of structural, electrical and magnetic properties of MnAlxFe2-xO4 ferrite nanoparticles processed by solution combustion route. Phys. B Condens. Matter 646, 414368 (2022)

    Google Scholar 

  17. R.V. Bharathi, M.K. Raju, P.S.V. Shanmukhi, M.G. Kiran, N. Murali, D. Parajuli, T.W. Mammo, K. Samatha, Enhanced DC electrical resistivity and magnetic properties of transition metal cobalt substituted spinel MgFe2O4 ferrite system. Inorg. Chem. Commun. 158, 111713 (2023)

    Google Scholar 

  18. M. Madhu, A.V. Rao, N. Murali, D. Parajuli, T.W. Mammo, Effect of Al3+ substitution on the synthesis, magnetic, and electrical properties of Ni0.3Zn0.5Co0.2Fe2−xAlxO4 spinel ferrites. J. Mater. Sci. Mater. Electron. 34, 2158 (2023). https://doi.org/10.1007/s10854-023-11551-y

    Article  Google Scholar 

  19. M. Kumar, H.S. Dosanjh, H. Singh, Magnetic zinc ferrite–chitosan bio-composite: synthesis, characterization and adsorption behavior studies for cationic dyes in single and binary systems. J. Inorg. Organomet. Polym. Mater. 28, 880–898 (2018)

    Google Scholar 

  20. D. Thakur, S. Govindaraju, K. Yun, J.-S. Noh, The synergistic effect of zinc ferrite nanoparticles uniformly deposited on silver nanowires for the biofilm inhibition of Candida albicans. Nanomaterials 9, 1431 (2019)

    Google Scholar 

  21. H. Fan, C. Chen, Q. Huang, J. Lu, J. Hu, P. Wang, J. Liang, H. Hu, T. Gan, Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe2O4 to persulfate for crystal violet degradation. Environ. Sci. Pollut. Res. 30, 38775–38793 (2023)

    Google Scholar 

  22. S. Ghotekar, S. Pansambal, V.-H. Nguyen, S. Bangale, K.-Y.A. Lin, H.C.A. Murthy, R. Oza, Spinel ZnCr2O4 nanorods synthesized by facile sol-gel auto combustion method with biomedical properties. J. Sol-Gel Sci. Technol. 105, 176–185 (2023). https://doi.org/10.1007/s10971-022-05964-0

    Article  Google Scholar 

  23. J. Qiu, C. Wang, M. Gu, Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B 112, 1–4 (2004)

    Google Scholar 

  24. T. Kaewmanee, A. Phuruangrat, T. Thongtem, S. Thongtem, Solvothermal synthesis of Mn–Zn Ferrite (core)@ SiO2 (shell)/BiOBr0.5Cl0.5 nanocomposites used for adsorption and photocatalysis combination. Ceram. Int. 46, 3655–3662 (2020)

    Google Scholar 

  25. M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, H.R. Naika, K. Vinu, Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchem. J. 146, 1227–1235 (2019)

    Google Scholar 

  26. S.B. Patil, H.B. Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities. Mater. Chem. Phys. 212, 351–362 (2018)

    Google Scholar 

  27. A. Arimi, L. Megatif, L.I. Granone, R. Dillert, D.W. Bahnemann, Visible-light photocatalytic activity of zinc ferrites. J. Photochem. Photobiol. Chem. 366, 118–126 (2018)

    Google Scholar 

  28. M. Kumar, H.S. Dosanjh, H. Singh, Synthesis of spinel ZnFe2O4 modified with SDS via low temperature combustion method and adsorption behaviour of crystal violet dye. Asian J. Chem. 29, 2057–2064 (2017)

    Google Scholar 

  29. A. Nigam, S.J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications. Ceram. Int. 46, 4058–4064 (2020)

    Google Scholar 

  30. R. Jasrotia, J. Prakash, G. Kumar, R. Verma, S. Kumari, S. Kumar, V.P. Singh, A.K. Nadda, S. Kalia, Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere 294, 133706 (2022)

    Google Scholar 

  31. S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl. Catal. B Environ. 147, 340–352 (2014)

    Google Scholar 

  32. G. Katoch, J. Prakash, R. Jasrotia, A. Verma, R. Verma, S. Kumari, T. Ahmad, S.K. Godara, J. Ahmed, A. Kandwal, Sol-gel auto-combustion developed Nd and Dy co-doped Mg nanoferrites for photocatalytic water treatment, electrocatalytic water splitting and biological applications. J. Water Process Eng. 53, 103726 (2023)

    Google Scholar 

  33. S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. 216, 114500 (2023)

    Google Scholar 

  34. R. Jasrotia, A. Verma, R. Verma, S.K. Godara, J. Ahmed, A. Mehtab, T. Ahmad, P. Puri, S. Kalia, Photocatalytic degradation of malachite green pollutant using novel dysprosium modified Zn–Mg photocatalysts for wastewater remediation. Ceram. Int. 48(19), 29111–29120 (2022)

    Google Scholar 

  35. R. Jasrotia, A. Verma, R. Verma, S. Kumar, J. Ahmed, B. Krishan, S. Kumari, A.M. Tamboli, S. Sharma, S. Kalia, Nickel ions modified CoMg nanophotocatalysts for solar light-driven degradation of antimicrobial pharmaceutical effluents. J. Water Process Eng. 47, 102785 (2022)

    Google Scholar 

  36. R. Jasrotia, N. Kumari, R. Verma, S.K. Godara, J. Ahmed, S.M. Alshehri, B. Pandit, S. Thakur, S. Sharma, P.K. Maji, Effect of rare earth (Nd3+) metal doping on structural, morphological, optical and magnetic traits of Zn–Mg nano-ferrites. J. Rare Earths 41, 1763–1770 (2022)

    Google Scholar 

  37. Z. Hu, H. Wu, F. Zhu, S. Komarneni, J. Ma, Activation of Na2S2O8 by MIL-101 (Fe)/Co3O4 composite for degrading tetracycline with visible light assistance. Inorg. Chem. Commun. 144, 109902 (2022)

    Google Scholar 

  38. P. Kotwal, R. Jasrotia, J. Prakash, J. Ahmed, A. Verma, R. Verma, A. Kandwal, S.K. Godara, S. Kumari, P.K. Maji, Magnetically recoverable sol-gel auto-combustion developed Ni1-xCuxDyyFe2-yO4 magnetic nanoparticles for photocatalytic, electrocatalytic, and antibacterial applications. Environ. Res. 231, 116103 (2023)

    Google Scholar 

  39. S. Kumar Godara, R. Jasrotia, V. Kaur, P. Singh Malhi, J. Ahmed, A. Kandwal, S. Verma, M. Singh, P. Kaur, R. Kumar Dhaka, A sustainable approach for the synthesis of PbFe 12 O 19 materials using tomato pulp as a fuel: structural, morphological, optical, magnetic, and dielectric traits. J. Magn. Magn. Mater. 573, 170643 (2023)

    Google Scholar 

  40. Y. Xia, Z. He, J. Su, B. Tang, K. Hu, Y. Lu, S. Sun, X. Li, Fabrication of magnetically separable NiFe 2 O 4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. 8, 4284–4294 (2018)

    ADS  Google Scholar 

  41. M.R. Ansari, A. Kem, P. Agrohi, P.K. Mallick, P. Rao, K.R. Peta, Structural, optical, magnetic and anti-bacterial properties of green synthesized spinel zinc ferrite by microwave-assisted method. Mater. Chem. Phys. 301, 127641 (2023)

    Google Scholar 

  42. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017)

    ADS  Google Scholar 

  43. M. Milanović, I. Stijepović, V. Pavlović, V.V. Srdić, Functionalization of zinc ferrite nanoparticles: influence of modification procedure on colloidal stability, process. Appl. Ceram. 10, 287–293 (2016)

    Google Scholar 

  44. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    ADS  Google Scholar 

  45. M.A. Almessiere, Y. Slimani, H. Güngüneş, A.D. Korkmaz, S.V. Trukhanov, S. Guner, F. Alahmari, A.V. Trukhanov, A. Baykal, Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. Mater. Sci. Eng. B 270, 115202 (2021)

    Google Scholar 

  46. M.S.R. Prasad, B. Prasad, B. Rajesh, K.H. Rao, K.V. Ramesh, Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel–zinc ferrite system. J. Magn. Magn. Mater. 323, 2115–2121 (2011)

    ADS  Google Scholar 

  47. M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids 108, 61–75 (2017)

    ADS  Google Scholar 

  48. A. Verma, S. Thakur, G. Mamba, R.K. Gupta, P. Thakur, V.K. Thakur, Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 148, 1130–1139 (2020)

    Google Scholar 

  49. N. Ali, A. Said, F. Ali, F. Raziq, Z. Ali, M. Bilal, L. Reinert, T. Begum, H. Iqbal, Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut. 231, 1–16 (2020)

    Google Scholar 

  50. S. Thakur, A. Verma, V. Kumar, X.J. Yang, S. Krishnamurthy, F. Coulon, V.K. Thakur, Cellulosic biomass-based sustainable hydrogels for wastewater remediation: chemistry and prospective. Fuel 309, 122114 (2022)

    Google Scholar 

  51. R. Jasrotia, P. Puri, A. Verma, V.P. Singh, Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application. J. Solid State Chem. 289, 121462 (2020)

    Google Scholar 

  52. A. Verma, S. Thakur, G. Goel, J. Raj, V.K. Gupta, D. Roberts, V.K. Thakur, Bio-based sustainable aerogels: New sensation in CO2 capture. Curr. Res. Green Sustain. Chem. 3, 100027 (2020)

    Google Scholar 

  53. A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1- xFe2O4) through co-precipitation method. J. Mater. Sci. Mater. Electron. 28, 18480–18488 (2017)

    Google Scholar 

  54. S. Thakur, A. Verma, P. Raizada, O. Gunduz, D. Janas, W.F. Alsanie, F. Scarpa, V.K. Thakur, Bentonite-based sodium alginate/dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions. Chemosphere 291, 133002 (2022)

    Google Scholar 

  55. R. Jasrotia, A. Verma, R. Verma, J. Ahmed, S.K. Godara, G. Kumar, A. Mehtab, T. Ahmad, S. Kalia, Photocatalytic dye degradation efficiency and reusability of Cu-substituted Zn-Mg spinel nanoferrites for wastewater remediation. J. Water Process Eng. 48, 102865 (2022)

    Google Scholar 

  56. M.A. Almessiere, Y. Slimani, S. Rehman, F.A. Khan, Ç. Güngüneş, S. Güner, S.E. Shirsath, A. Baykal, Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arab. J. Chem. 13, 7403–7417 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors thank to the Researchers Supporting Project number (RSP2024R29) at King Saud University, Riyadh, Saudi Arabia to backing this research.

Author information

Authors and Affiliations

Authors

Contributions

Sanjay Kumar (Synthesis and original draft writing), Rohit Jasrotia (Supervision, Conception, Fabrication, Investigation, Writing Original Draft, Review and Editing), Ankit Verma (Investigation), Abhishek Kandwal (Software), Jahangeer Ahmed (Review and Characterization), Saad M. Alshehri (Characterization), Swati Kumari (Investigation), Sachin Kumar Godara (Investigation), Pankaj Sharma (Reviewing and editing the final draft).

Corresponding authors

Correspondence to Rohit Jasrotia or Pankaj Sharma.

Ethics declarations

Conflicts of interest

There are no conflicts of interest among the authors for publishing this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jasrotia, R., Verma, A. et al. Superparamagnetic Dy modified ZnFe2O4 magnetic nanophotocatalysts for the photocatalytic degradation of crystal violet pollutant. Appl. Phys. A 130, 258 (2024). https://doi.org/10.1007/s00339-024-07431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07431-9

Keywords

Navigation