Skip to main content
Log in

Molecular dynamics investigation on the thermal-oxidative aging and mechanical properties of nitrile butadiene rubber composites with molybdenum disulfide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rubber has a wide range of application prospects as an important material in the field of oil extraction and sealing rings. The effect of molybdenum disulfide (2H-MoS2) on the properties of the composites of antioxidant 4020 and nitrile butadiene rubber (NBR) was investigated. Two sets of composites, 4020/NBR and MoS2/4020/NBR, were modeled using molecular dynamics simulations. The mechanical, thermal-oxidative aging and tribological properties of 2H-MoS2 on NBR composites were investigated at 298 and 398 K, respectively, and the adsorption ability and reinforcement effect of 2H-MoS2 on NBR were analyzed from an atomic perspective. The mechanical studies showed that Young’s modulus of MoS2/4020/NBR composites was improved by about 28% and 23% compared with 4020/NBR composites at 298 and 398 K temperatures, respectively. Therefore, the mechanical properties of NBR composites were significantly improved by the addition of MoS2. Similarly, the properties such as solubility parameters, mean square displacement, and binding energy of MoS2/4020/NBR composites were improved, and the stability and thermal and oxygen aging properties of NBR composites were effectively improved after the addition of MoS2. Tribological studies also showed that the friction coefficients of MoS2/4020/NBR composites were reduced by about 30% and 25%, and the wear rates were reduced by 5% and 7% at 298 and 398 K, respectively, compared with those of 4020/NBR composites. Therefore, MoS2 successfully enhances the tribological characteristics of NBR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A.E. Jahromi, H.R.E. Jahromi, F. Hemmati et al., Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: a comparative study. Compos. B Eng. 90, 478–484 (2016). https://doi.org/10.1016/j.compositesb.2015.12.042

    Article  Google Scholar 

  2. D. Feng, M.-X. Shen, X.-D. Peng et al., Surface roughness effect on the friction and wear behaviour of acrylonitrile-butadiene rubber (NBR) under oil lubrication. Tribol. Lett. 65, 10 (2017). https://doi.org/10.1007/s11249-016-0793-5

    Article  Google Scholar 

  3. J. Liu, X. Li, L. Xu et al., Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym. Testing 54, 59–66 (2016). https://doi.org/10.1016/j.polymertesting.2016.06.010

    Article  Google Scholar 

  4. X. Zhai, Y. Chen, D. Han et al., New designed coupling agents for silica used in green tires with low VOCs and low rolling resistance. Appl. Surf. Sci. 558, 149819 (2021). https://doi.org/10.1016/j.apsusc.2021.149819

    Article  Google Scholar 

  5. C. Zhang, T. Wang, W. Sun, C. Li, H. Zhao, Grafting of antioxidant onto polyethylene to improve DC dielectric and thermal aging properties. IEEE Trans. Dielectr. Electr. Insul. 28(2), 541–549 (2021). https://doi.org/10.1109/TDEI.2020.009261

    Article  Google Scholar 

  6. B. Zhong, H. Dong, Y. Luo et al., Simultaneous reduction and functionalization of graphene oxide via antioxidant for highly aging resistant and thermal conductive elastomer composites. Compos. Sci. Technol. 151, 156–163 (2017). https://doi.org/10.1016/j.compscitech.2017.08.019

    Article  Google Scholar 

  7. G.H. Jeong, S.P. Sasikala, T. Yun et al., Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 32(35), 1907006 (2020). https://doi.org/10.1002/adma.201907006

    Article  Google Scholar 

  8. S. Imani Yengejeh, J. Liu, S.A. Kazemi et al., Effect of structural phases on mechanical properties of molybdenum disulfide. ACS Omega 5(11), 5994–6002 (2020). https://doi.org/10.1021/acsomega.9b04360

    Article  Google Scholar 

  9. R. Fiel, I.D. Barcelos, E.R. Leite, Organo-functionalized MoS2 as a nanofiller to enhance and control the swelling behavior of polybutadiene rubber nanocomposites. Compos. Commun. 30, 101053 (2022). https://doi.org/10.1016/j.coco.2021.101053

    Article  Google Scholar 

  10. Z. Tang, C. Zhang, Q. Wei et al., Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Compos. Sci. Technol. 132, 93–100 (2016). https://doi.org/10.1016/j.compscitech.2016.07.001

    Article  Google Scholar 

  11. C. Yi, C. Hu, M. Bai et al., Molecular dynamics study on the mechanical properties of multilayer MoS2 under different potentials. Nanotechnology 31(21), 215703 (2020)

    Article  ADS  Google Scholar 

  12. Y. Peng, Z. Ni, Tribological properties of stearic acid modified multi-walled carbon nanotubes in water. J. Tribol.-Trans. ASME (2013). https://doi.org/10.1115/1.4007676

    Article  Google Scholar 

  13. Y. Li, Z. Man, X. Lin et al., Role of well-dispersed carbon nanotubes and limited matrix degradation on tribological properties of flame-sprayed PEEK nanocomposite coatings. J. Tribol.-Trans. ASME (2022). https://doi.org/10.1115/1.4050733

    Article  Google Scholar 

  14. B. Chen, S. Liang, S. Lu et al., Tribological properties of multi-walled carbon nanotube-Cr and graphene oxide-Cr composite coating. J. Tribol.-Trans. ASME (2019). https://doi.org/10.1115/1.4043066

    Article  Google Scholar 

  15. R. Singh, C. Sarkar, Characterization of magnetorheological brake in shear mode using high-strength MWCNTs and fumed silica-based magnetorheological fluids at low magnetic fields. J. Tribol.-Trans. ASME (2023). https://doi.org/10.1115/1.4056042

    Article  Google Scholar 

  16. Y. Li, S. Wang, B. Arash et al., A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: molecular dynamics simulations. Carbon 100, 145–150 (2016). https://doi.org/10.1016/j.carbon.2015.12.104

    Article  Google Scholar 

  17. B. Yang, S. Wang, Z. Song et al., Molecular dynamics study on the reinforcing effect of incorporation of graphene/carbon nanotubes on the mechanical properties of swelling rubber. Polym. Testing 102, 107337 (2021). https://doi.org/10.1016/j.polymertesting.2021.107337

    Article  Google Scholar 

  18. T. Förster, Prediction of in-service NBR properties by TG-IR after storage in mineral oil, in Properties and characterization of modern materials. ed. by A. Öchsner, H. Altenbach (Springer, Singapore, 2017), pp.399–411. https://doi.org/10.1007/978-981-10-1602-8_31

    Chapter  Google Scholar 

  19. F. Wang, H. Wang, Z. Wang et al., Study on properties of hydrogenated nitrile butadiene rubber filled with polyaniline compound silica. Polym. Compos. (2022). https://doi.org/10.1002/pc.26788

    Article  Google Scholar 

  20. Y. Fu, C. Yang, Y.M. Lvov et al., Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber. Chem. Eng. J. 328, 536–545 (2017). https://doi.org/10.1016/j.cej.2017.06.142

    Article  Google Scholar 

  21. N. Vu-Bac, M.A. Bessa, T. Rabczuk et al., A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18), 6713–6723 (2015)

    Article  ADS  Google Scholar 

  22. N. Vu-Bac, P.M.A. Areias, T. Rabczuk, A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymer 105, 327–338 (2016)

    Article  Google Scholar 

  23. N. Vu-Bac, T. Lahmer, H. Keitel et al., Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. 68, 70–84 (2014)

    Article  Google Scholar 

  24. N. Vu-Bac, X. Zhuang, T. Rabczuk, Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials 12(21), 3613 (2019)

    Article  ADS  Google Scholar 

  25. X. Wang, D. Chen, W. Zhong et al., Experimental and theoretical evaluations of the interfacial interaction between carbon nanotubes and carboxylated butadiene nitrile rubber: mechanical and damping properties. Mater. Des. 186, 108318 (2020). https://doi.org/10.1016/j.matdes.2019.108318

    Article  Google Scholar 

  26. Q. Wei, Y. Wang, Y. Rao et al., Evaluating the effects of nanosilica on mechanical and tribological properties of polyvinyl alcohol/polyacrylamide polymer composites for artificial cartilage from an atomic level. Polymers 11(1), 76 (2019). https://doi.org/10.3390/polym11010076

    Article  Google Scholar 

  27. Y. Shang, J. Wen, Y. Dong et al., Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition. J. Lumin. 187, 201–204 (2017). https://doi.org/10.1016/j.jlumin.2017.03.009

    Article  Google Scholar 

  28. A.S. Sethulekshmi, J.S. Jayan, S. Appukuttan et al., MoS2: advanced nanofiller for reinforcing polymer matrix. Phys. E 132, 114716 (2021). https://doi.org/10.1016/j.physe.2021.114716

    Article  Google Scholar 

  29. W. Song, J. Yan, H. Ji, Fabrication of GNS/MoS2 composite with different morphology and its tribological performance as a lubricant additive. Appl. Surf. Sci. 469, 226–235 (2019). https://doi.org/10.1016/j.apsusc.2018.10.266

    Article  ADS  Google Scholar 

  30. A.S. Pavlov, P.G. Khalatur, Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation. Soft Matter 12(24), 5402–5419 (2016). https://doi.org/10.1039/C6SM00543H

    Article  ADS  Google Scholar 

  31. Y.R. Liang, H.X. Yang, Y.J. Tan et al., Mechanical and tribological properties of nitrile rubber filled with modified molybdenum disulphide. Plast. Rubber Compos. 45(6), 247–252 (2016). https://doi.org/10.1080/14658011.2016.1178968

    Article  ADS  Google Scholar 

  32. S. Baghel, H. Cathcart, N.J. O’Reilly, Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 105(9), 2527–2544 (2016). https://doi.org/10.1016/j.xphs.2015.10.008

    Article  Google Scholar 

  33. C.Y. Tsai, S.Y. Lin, H.C. Tsai, Butyl rubber nanocomposites with monolayer MoS2 additives: structural characteristics, enhanced mechanical, and gas barrier properties. Polymers 10(3), 238 (2018). https://doi.org/10.3390/polym10030238

    Article  Google Scholar 

  34. E. Hu, E. Su, Y. Chen et al., Preparation and tribological behaviors of modified rice husk carbon/MoS2 composite particles as a functional additive in polyethylene glycol. Tribol Trans. (2022). https://doi.org/10.1080/10402004.2022.2052213

    Article  Google Scholar 

  35. J. Cui, J. Zhao, S. Wang et al., A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functionalized graphene sheets: molecular dynamics simulations. Polym. Compos. 42(1), 205–219 (2021). https://doi.org/10.1002/pc.25819

    Article  Google Scholar 

  36. J.I. Kim, J.W. Kim, S.H. Ryu, Wear characteristics of exfoliated MoS2/polyamide-6, 6 composite. J. Elastomers Plast. 54(2), 374–384 (2022). https://doi.org/10.1177/00952443211047072

    Article  Google Scholar 

  37. Y. Luo, R. Wang, W. Wang et al., Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J. Phys. Chem. C 121(18), 10163–10173 (2017). https://doi.org/10.1021/acs.jpcc.7b01583

    Article  Google Scholar 

  38. P. Weng, Q. Wei, Z. Tang et al., The influence of molybdenum disulfide nanoplatelets on the dispersion of nano silica in natural rubber composites. Appl. Surf. Sci. 359, 782–789 (2015). https://doi.org/10.1016/j.apsusc.2015.10.172

    Article  ADS  Google Scholar 

  39. B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4(1), 1–8 (2014). https://doi.org/10.1038/srep06479

    Article  Google Scholar 

  40. C. He, X. She, Z. Peng et al., Graphene networks and their influence on free-volume properties of graphene–epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies. Phys. Chem. Chem. Phys. 17(18), 12175–12184 (2015). https://doi.org/10.1039/C5CP00465A

    Article  Google Scholar 

  41. R.K. Upadhyay, A. Kumar, Effect of humidity on the synergy of friction and wear properties in ternary epoxy-graphene-MoS2 composites. Carbon 146, 717–727 (2019). https://doi.org/10.1016/j.carbon.2019.02.015

    Article  Google Scholar 

  42. D.N. Sangeetha, M. Selvakumar, Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl. Surf. Sci. 453, 132–140 (2018). https://doi.org/10.1016/j.apsusc.2018.05.033

    Article  ADS  Google Scholar 

  43. D. Vikraman, S. Hussain, M. Ali et al., Theoretical evaluation and experimental investigation of layered 2H/1T-phase MoS2 and its reduced graphene-oxide hybrids for hydrogen evolution reactions. J. Alloy. Compd. 868, 159272 (2021). https://doi.org/10.1016/j.jallcom.2021.159272

    Article  Google Scholar 

  44. R. Zhang, Y. Qin, P. Liu et al., How does molybdenum disulfide store charge: a minireview. Chemsuschem 13(6), 1354–1365 (2020). https://doi.org/10.1002/cssc.201903320

    Article  Google Scholar 

  45. R.J. Toh, Z. Sofer, J. Luxa et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53(21), 3054–3057 (2017). https://doi.org/10.1039/C6CC09952A

    Article  Google Scholar 

  46. S.J. Eder, A. Vernes, G. Betz, On the Derjaguin offset in boundary-lubricated nanotribological systems. Langmuir 29(45), 13760–13772 (2013). https://doi.org/10.1021/la4026443

    Article  Google Scholar 

  47. C. Qian, Y. Li, J. Zhao et al., Thermal-oxidative aging and tribological properties of carbon nanotube/nitrile butadiene rubber composites with varying acrylonitrile content: molecular dynamics simulations. Polym. Eng. Sci. 63(5), 1516–1527 (2023). https://doi.org/10.1002/pen.26302

    Article  Google Scholar 

  48. Y. Fukahori, P. Gabriel, H. Liang et al., A new generalized philosophy and theory for rubber friction and wear. Wear 446, 203166 (2020). https://doi.org/10.1016/j.wear.2019.203166

    Article  Google Scholar 

Download references

Funding

This research was funded by financial support from the Natural Science Foundation of Liaoning Province (2022-BS-176), Basic Research Project of Education Department of Liaoning Province (LJKMZ20220457).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Qian: Conceptualization, Methodology, Software, Visualization, Writing-original draft, Writing—review and editing, Funding acquisition. Jichi Che: Supervision. Shijie Wang: Resources, Writing—review and editing, Supervision. Mengjia Wang: Methodology, Visualization, Writing-original draft, Software. Shuyuan Song: Writing—review and editing.

Corresponding author

Correspondence to Jichi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Chen, J., Wang, S. et al. Molecular dynamics investigation on the thermal-oxidative aging and mechanical properties of nitrile butadiene rubber composites with molybdenum disulfide. Appl. Phys. A 130, 256 (2024). https://doi.org/10.1007/s00339-024-07419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07419-5

Keywords

Navigation