Skip to main content
Log in

A parametric study of crystal structure, phase stability, and conductivity of the novel phosphate-based composite electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This novel research focused on synthesizing a series of new proton conductive electrolytes of CsH2PO4 and CeP2O7 by chemical reaction method, in which phase purity, functional groups, thermal stability, and ionic conductivity were investigated. The composite electrolyte showed improvement in conductivity by about 4 orders of magnitude with oxide ion conduction observed with a value of 4.16 × 10–2 S cm–1. This work provides a comprehensive view of the underlying oxide ion migration mechanism for CsH2PO4 with tetravalent pyrophosphate-based composites. CsH2PO4 and pyrophosphate have gained significant interest as proton conductors for electrolyte application. The crystal growth approach developed here will prove useful for obtaining compounds that are thermodynamically favorable at temperatures close to ambient and the composite electrolytes confirm the practical suitability of the presented material to be used for intermediate-temperature fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available upon request to the corresponding author.

References

  1. S. Afroze, M.S. Reza, M.R. Somalu, A.K. Azad, Super–protonic conductors for solid acid fuel cells (SAFCs): a review. Eurasian J. Phys. Funct. Mater. 7, 6–37 (2023). https://doi.org/10.32523/ejpfm.2023070101

    Article  Google Scholar 

  2. A.V. Nikonov, K.A. Kuterbekov, K.Z. Bekmyrza, N.B. Pavzderin, A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J. Phys. Funct. Mater. 2, 274–292 (2018). https://doi.org/10.29317/ejpfm.2018020309

    Article  Google Scholar 

  3. G. Shen, J. Liu, H. Bin Wu, P. Xu, F. Liu, C. Tongsh, K. Jiao, J. Li, M. Liu, M. Cai, J.P. Lemmon, G. Soloveichik, H. Li, J. Zhu, Y. Lu, Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Nat. Commun. 11, 1–10 (2020). https://doi.org/10.1038/s41467-020-14822-y

    Article  ADS  Google Scholar 

  4. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115

    Article  ADS  Google Scholar 

  5. V.V. Martsinkevich, V.G. Ponomareva, Double salts Cs1- xMxH2PO4 (M = Na, K, Rb) as proton conductors. Solid State Ionics 225, 236–240 (2012). https://doi.org/10.1016/j.ssi.2012.04.016

    Article  Google Scholar 

  6. M.R. Osafi, A. BakhshiAni, M. Kalbasi, Numerical modeling of solid acid fuel cell performance with CsH2PO4- AAM (anodic alumina membrane) composite electrolyte. Int. J. Heat Mass Transf. 129, 1086–1094 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.049

    Article  Google Scholar 

  7. D.K. Lim, J. Liu, S.A. Pandey, H. Paik, C.R.I. Chisholm, J.T. Hupp, S.M. Haile, Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells. Electrochim. Acta 288, 12–19 (2018). https://doi.org/10.1016/j.electacta.2018.07.076

    Article  Google Scholar 

  8. A. Andrio, L.F. Castillo, Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Phys. Chem. Chem. Phys. 21, 12948–12960 (2019). https://doi.org/10.1039/c8cp07472k

    Article  Google Scholar 

  9. S. Sanghvi, S.M. Haile, Crystal structure, conductivity, and phase stability of Cs3(H1.5PO4)2 under controlled humidity. Solid State Ionics 349, 115291 (2020). https://doi.org/10.1016/j.ssi.2020.115291

    Article  Google Scholar 

  10. H. Paik, A.V. Berenov, S.J. Skinner, S.M. Haile, Hydrogen oxidation kinetics on platinum-palladium bimetallic thin films for solid acid fuel cells. APL Mater. (2019). https://doi.org/10.1063/1.5050093

    Article  Google Scholar 

  11. I.N. Bagryantseva, V.G. Ponomareva, N.P. Lazareva, Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Solid State Ionics 329, 61–66 (2019). https://doi.org/10.1016/j.ssi.2018.11.010

    Article  Google Scholar 

  12. B. Singh, H.N. Im, J.Y. Park, S.J. Song, Electrical behavior of CeP2O7 electrolyte for the application in low-temperature proton-conducting ceramic electrolyte fuel cells. J. Electrochem. Soc. 159, 819–825 (2012). https://doi.org/10.1149/2.055212jes

    Article  Google Scholar 

  13. L. Mathur, I. Kim, A. Bhardwaj, B. Singh, J. Park, S. Song, Structural and electrical properties of novel phosphate based composite electrolyte for low-temperature fuel cells. Compos Part B. 202, 108405 (2020). https://doi.org/10.1016/j.compositesb.2020.108405

    Article  Google Scholar 

  14. B. Singh, J.H. Kim, H.N. Im, S.J. Song, Cerium pyrophosphate-based proton-conducting ceramic electrolytes for low temperature fuel cells. J. Korean Ceram. Soc. 51, 248–259 (2014). https://doi.org/10.4191/kcers.2014.51.4.248

    Article  Google Scholar 

  15. B. Singh, S.Y. Jeon, H.N. Im, J.Y. Park, S.J. Song, Electrical conductivity of M2+-doped (M = Mg, Ca, Sr, Ba) cerium pyrophosphate-based composite electrolytes for low-temperature proton conducting electrolyte fuel cells. J. Alloys Compd. 578, 279–285 (2013). https://doi.org/10.1016/j.jallcom.2013.06.017

    Article  Google Scholar 

  16. S.K. Gautam, A. Singh, L. Mathur, N. Devi, R.K. Singh, S.J. Song, D. Henkensmeier, B. Singh, Sintering and electrical behavior of ZrP2O7–CeP2O7 solid solutions Zr1-xCexP2O7; x = 0–0.2 and (Zr0.92Y0.08) 1-yCeyP2O7; y = 0–0.1 for application as electrolyte in intermediate temperature fuel cells. Ionics (Kiel). 25, 155–162 (2019). https://doi.org/10.1007/s11581-018-2563-x

    Article  Google Scholar 

  17. M.V. Le, D.S. Tsai, C.Y. Yang, W.H. Chung, H.Y. Lee, Proton conductors of cerium pyrophosphate for intermediate temperature fuel cell. Electrochim. Acta 56, 6654–6660 (2011). https://doi.org/10.1016/j.electacta.2011.05.040

    Article  Google Scholar 

  18. D. Veer, P. Kumar, D. Singh, R.S. Katiyar, Study of proton mobility and thermal stability of novel orthophosphate-based composite electrolyte for conductivity improvement. Ionics 28, 3357–3366 (2022). https://doi.org/10.1007/s11581-022-04576-6

    Article  Google Scholar 

  19. D. Veer, D. Singh, D. Kumar, P. Kumar, R.S. Katiyar, Structural, thermal, and superprotonic behavior of a new phosphate NaH2PO4⋅2H2O/ZrO2. Inorg. Chem. Commun. 146, 110195 (2022). https://doi.org/10.1016/j.inoche.2022.110195

    Article  Google Scholar 

  20. D. Veer, P. Kumar, D. Singh, D. Kumar, R.S. Katiyar, Conduction and stability performance of CsH2PO4 with NaH2PO4/ZrO2 for fuel cell. Mater. Res. Express 8, 115501 (2021). https://doi.org/10.1088/2053-1591/ac27d0

    Article  ADS  Google Scholar 

  21. D. Singh, J. Singh, D. Veer, P. Kumar, R.S. Katiyar, Synergistic effect of SiO2 on proton conduction and thermal behavior for nanocomposite electrolyte CsH2PO4 fuel cells. J. Mater. Sci. Mater. Electron. 33, 6524–6535 (2022). https://doi.org/10.1007/s10854-022-07827-4

    Article  Google Scholar 

  22. G.V. Lavrova, V.G. Ponomareva, Intermediate-temperature composite proton electrolyte CsH5(PO4)2/SiO2: transport properties versus oxide characteristic. Solid State Ionics 179, 1170–1173 (2008). https://doi.org/10.1016/j.ssi.2008.01.003

    Article  Google Scholar 

  23. I.N. Bagryantseva, A.A. Gaydamaka, V.G. Ponomareva, Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer. Ionics (Kiel). 26, 1813–1818 (2020). https://doi.org/10.1007/s11581-020-03505-9

    Article  Google Scholar 

  24. J. Otomo, N. Minagawa, C.J. Wen, K. Eguchi, H. Takahashi, Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 156, 357 (2003). https://doi.org/10.1016/S0167-2738(02)00746-4

    Article  Google Scholar 

  25. X. Huang, Y. Deng, C. Xu, Y. Hu, L. Yang, P. Luo, Y. Lu, J. Cheng, Graphite oxide-incorporated CeP2O7/BPO4 solid composite electrolyte for high-temperature proton exchange membrane fuel cells. Fuel 179, 299–304 (2016). https://doi.org/10.1016/j.fuel.2016.03.089

    Article  Google Scholar 

  26. H. Wang, J. Chen, C. Luo, R. Qiao, Electrical conduction of CeP2O7 and Ce095Yb005P2O7 at intermediate temperatures. Solid State Ionics 263, 71–74 (2014). https://doi.org/10.1016/j.ssi.2014.02.015

    Article  Google Scholar 

  27. P. Kumar, D. Veer, D. Singh, A. Kumar, R.S. Katiyar, Role of cerium pyrophosphate for improving protonic conduction and stabilization of SDP.2H2O composite electrolytes. Inorg. Chem. Commun. 158, 111614 (2023). https://doi.org/10.1016/j.inoche.2023.111614

    Article  Google Scholar 

  28. I.N. Bagryantseva, V.G. Ponomareva, Transport and structural properties of (1-X)CsHSO4-xKH2PO4 mixed compounds. Solid State Ionics 225, 250–254 (2012). https://doi.org/10.1016/j.ssi.2012.02.032

    Article  Google Scholar 

  29. V.G. Ponomareva, I.N. Bagryantseva, The influence of Cs2HPO4·H2O impurity on the proton conductivity and thermal properties of CsH2PO4. Solid State Ionics 329, 90–94 (2019). https://doi.org/10.1016/j.ssi.2018.11.021

    Article  Google Scholar 

  30. N. Mohammad, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, Effect of silica on the thermal behaviour and ionic conductivity of mixed salt solid acid composites. J. Alloys Compd. 690, 896–902 (2017). https://doi.org/10.1016/j.jallcom.2016.08.188

    Article  Google Scholar 

  31. S. Hosseini, W.R. Wan Daud, M. Badiei, A.A.H. Kadhum, A.B. Mohammad, Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bull. Mater. Sci. 34, 759–765 (2011). https://doi.org/10.1007/s12034-011-0192-3

    Article  Google Scholar 

  32. Z. Tao, W. Zhang, Y. Huang, D. Wei, H. Seo, A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability. Solid-State Sci 34, 78–84 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.016

    Article  ADS  Google Scholar 

  33. V.G. Ponomareva, G.V. Lavrova, Effect of the excess protons on the electrotansport, structural and thermodynamic properties of CsH2PO4. Solid State Ionics 30, 90–95 (2017). https://doi.org/10.1016/j.ssi.2017.03.026

    Article  Google Scholar 

  34. E. Ortiz, R.A. Vargas, B.E. Mellander, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110, 4847–4853 (1999). https://doi.org/10.1063/1.478371

    Article  ADS  Google Scholar 

  35. D. Veer, P. Kumar, D. Singh, D. Kumar, R.S. Katiyar, A synergistic approach to achieving the high conduction and stability performance of CsH2PO4/NaH2PO4/ZrO2 for fuel cell. Mater. Adv. 3, 409 (2021). https://doi.org/10.1039/d1ma00612f

    Article  Google Scholar 

  36. T. Anfimova, A.H. Jensen, E. Christensen, J.O. Jensen, N.J. Bjerrum, Q. Li, CsH2PO4/NdPO4 composites as proton conducting electrolytes for intermediate temperature fuel cells. J. Electrochem. Soc. 162, 436–441 (2015). https://doi.org/10.1149/2.0671504jes

    Article  Google Scholar 

  37. X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, F. Huang, Proton conductivity of CeP2O7 for intermediate temperature fuel cells. Solid State Ionics 179, 1138–1141 (2008). https://doi.org/10.1016/j.ssi.2008.01.046

    Article  Google Scholar 

  38. X. Huang, G. Wang, M. Huang, Y. Deng, M.M. Fei, C. Xu, J. Cheng, Ce3+ doped CeP2O7 ceramic electrolyte for high temperature proton exchange membrane fuel cell. Int. J. Electrochem. Sci. 12, 2731–2740 (2017). https://doi.org/10.20964/2017.04.31

    Article  Google Scholar 

  39. B. Singh, N. Devi, L. Mathur, S. Song, A. Kumar, R.K. Singh, M. Ashiq, D.P. Mondal, A new solution phase synthesis of cerium (IV) pyrophosphate compounds of different morphologies using cerium (III) precursor. J. Alloys Compd. 793, 686–694 (2019). https://doi.org/10.1016/j.jallcom.2019.04.221

    Article  Google Scholar 

  40. K.M. White, P.L. Lee, P.J. Chupas, K.W. Chapman, E.A. Payzant, A.C. Jupe, W.A. Bassett, C.S. Zha, A.P. Wilkinson, Synthesis, symmetry, and physical properties of cerium pyrophosphate. Chem. Mater. 20, 3728–3734 (2008). https://doi.org/10.1021/cm702338h

    Article  Google Scholar 

  41. D. Singh, J. Singh, D. Veer, P. Kumar, R.S. Katiyar, Structural, thermal, and transport properties of nanocomposite CsH2PO4/NaH2PO4/TiO2: a novel proton conducting electrolyte for fuel cells. Results Chem. 4, 100262 (2021). https://doi.org/10.1016/j.rechem.2021.100262

    Article  Google Scholar 

  42. V.G. Ponomareva, E.S. Shutova, K.A. Kovalenko, V.P. Fedin, New type of nanocomposite CsH2PO4-UiO-66 electrolyte with high proton conductivity. Molecules (2022). https://doi.org/10.3390/molecules27238387

    Article  Google Scholar 

  43. D. Singh, J. Singh, D. Veer, P. Kumar, R.S. Katiyar, Influence of NaH2PO4 and TiO2 on the proton conduction and thermal properties of nanocomposite electrolyte CsH2PO4 for fuel cells. Russ. J. Inorg. Chem. 67, 598–607 (2022). https://doi.org/10.1134/S0036023622050199

    Article  Google Scholar 

  44. S. Wang, J. Otomo, M. Ogura, C.J. Wen, H. Nagamoto, H. Takahashi, Preparation and characterization of proton-conducting CsHSO4-SiO2 nanocomposite electrolyte membranes. Solid State Ionics 176, 755–760 (2005). https://doi.org/10.1016/j.ssi.2004.10.013

    Article  Google Scholar 

  45. C.E. Botez, I. Martinez, A. Price, H. Martinez, J.H. Leal, Superprotonic CsH2PO4 in dry air. J. Phys. Chem. Solids 129, 324–328 (2019). https://doi.org/10.1016/j.jpcs.2019.02.001

    Article  ADS  Google Scholar 

  46. Y. Kungurtsev, I. Bagryantseva, V. Ponomareva, Copolymer of VDF/TFE as a promising polymer additive for CsH2PO4-based composite electrolytes. Membranes (Basel) (2023). https://doi.org/10.3390/membranes13050520

    Article  Google Scholar 

Download references

Acknowledgements

We would like to support and thank the Material Science Laboratory, Gurukul Kangri (Deemed to be University) Haridwar, Uttarakhand, India.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. Dharm Veer & Deshraj Singh: Conceptualization and experimentation. Pawan Kumar: Writing manuscript and taking correspondence.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Veer, D., Singh, D. et al. A parametric study of crystal structure, phase stability, and conductivity of the novel phosphate-based composite electrolyte. Appl. Phys. A 130, 249 (2024). https://doi.org/10.1007/s00339-024-07414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07414-w

Keywords

Navigation