Skip to main content
Log in

Synergistic effect of SiO2 on proton conduction and thermal behavior for nanocomposite electrolyte CsH2PO4 fuel cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solid acid composite electrolytes (1−x)CsH2PO4(CDP)/xSiO2 (0 ≤ x ≤ 0.35) were prepared and observed the structural, thermal, and transport properties by XRD, EDX, FESEM, FTIR, DSC, TGA, DTA, and conductivity measurements. The crystallite size was obtained between the range of 36 and 64 nm. We have investigated the superprotonic phase transition at 230 °C in CDP, at which the conductivity increased up to four orders of magnitude. The initial dehydration event in CDP occurred at 250 °C. The performance of CDP was increased due to the addition of SiO2 in the form of conductivity and stability. Thermal characterization showed that by introducing the additives, dehydration behavior shifted to the lower in DSC and DTA at the higher temperature. The lowest weight loss was found in 65CDP/35SiO2. The stable protonic conductivity was observed with time for CDP, 95CDP/05SiO2, and 85CDP/15SiO2 in a hermetically closed chamber. The electrodes were prepared by vapor deposition of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Yoshimi, T. Matsui, R. Kikuchi, K. Eguchi, Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. J. Power Sources 179, 497–503 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.003

    Article  CAS  Google Scholar 

  2. Y. Hao, Z. Shao, J. Mederos, W. Lai, D.G. Goodwin, S.M. Haile, Recent advances in single-chamber fuel-cells: experiment and modeling. Solid State Ion. 177, 2013–2021 (2006). https://doi.org/10.1016/j.ssi.2006.05.008

    Article  CAS  Google Scholar 

  3. A.H. Jensen, Q. Li, E. Christensen, N.J. Bjerrum, Intermediate temperature fuel cell using CsH2PO4/ZrO2-based composite electrolytes. J. Electrochem. Soc. 161, 4–9 (2014). https://doi.org/10.1149/2.063401jes

    Article  CAS  Google Scholar 

  4. H. Nakaya, M. Iwasaki, T.H. de Beauvoir, C.A. Randall, Applying cold sintering process to a proton electrolyte material: CsH2PO4. J. Eur. Ceram. Soc. 39, 396–401 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.001

    Article  CAS  Google Scholar 

  5. S.M. Haile, C.R.I. Chisholm, K. Sasaki, D.A. Boysen, T. Uda, Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134, 17–39 (2007). https://doi.org/10.1039/b604311a

    Article  CAS  Google Scholar 

  6. J.H. Leal, H. Martinez, I. Martinez, A.D. Price, A.G. Goos, C.E. Botez, Stability of the superprotonic conduction of (1–x)CsH2PO4/xSiO2 (0 ≤ x ≤ 0.3) composites under dry and humid environments. Mater. Today Commun. 15, 11–17 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.021.1

    Article  CAS  Google Scholar 

  7. T. Anfimova, A.H. Jensen, E. Christensen, J.O. Jensen, N.J. Bjerrum, Q. Li, CsH2PO4/NdPO4 composites as proton conducting electrolytes for intermediate temperature fuel cells. J. Electrochem. Soc. 162, F436–F441 (2015). https://doi.org/10.1149/2.0671504jes

    Article  CAS  Google Scholar 

  8. V.G. Ponomareva, E.S. Shutova, Electrical conductivity and structural properties of proton electrolytes based on CsH2PO4 and silicophosphate matrices with low phosphorus content. Inorg. Mater. 50, 1056–1062 (2014). https://doi.org/10.1134/S0020168514100136

    Article  CAS  Google Scholar 

  9. H. Muroyama, T. Matsui, R. Kikuchi, K. Eguchi, Correlation between conduction behavior of CsH5(PO4)2 and thermal history. J. Electrochem. Soc. 155, B958 (2008). https://doi.org/10.1149/1.2956317

    Article  CAS  Google Scholar 

  10. D. Singh, P. Kumar, J. Singh, D. Veer, A. Kumar, R.S. Katiyar, Structural, thermal and electrical properties of composites electrolytes (1–x) CsH2PO4/x ZrO2 (0 ≤ x ≤ 0.4) for fuel cell with the advanced electrode. SN Appl. Sci. 3, 46 (2021). https://doi.org/10.1007/s42452-020-04097-9

    Article  CAS  Google Scholar 

  11. V.G. Ponomareva, G.V. Lavrova, The investigation of disordered phases in nanocomposite proton electrolytes based on MeHSO4 (Me = Rb, Cs, K). Solid State Ion. 145, 197–204 (2001). https://doi.org/10.1016/S0167-2738(01)00957-2

    Article  CAS  Google Scholar 

  12. V.G. Ponomareva, G.V. Lavrova, Effect of the excess protons on the electro transport, structural and thermodynamic properties of CsH2PO4. Solid State Ion. 304, 90–95 (2017). https://doi.org/10.1016/j.ssi.2017.03.026

    Article  CAS  Google Scholar 

  13. C.E. Botez, I. Martinez, A. Price, H. Martinez, J.H. Leal, Superprotonic CsH2PO4 in dry air. J. Phys. Chem. Solids 129, 324–328 (2019). https://doi.org/10.1016/j.jpcs.2019.02.001

    Article  CAS  Google Scholar 

  14. R.W. Berg, A.V. Nikiforov, N.J. Bjerrum, CsH2PO4 is not stable at 260 °C unless confined. Comments to article by C.E. Botez, I. Martinez, A. Price, H. Martinez, and J.H. Leal in J. Phys. Chem. Solids 129 (2019) 324-328. J. Phys. Chem. Solids 136, 109177 (2020). https://doi.org/10.1016/j.jpcs.2019.109177

    Article  CAS  Google Scholar 

  15. N. Mohammad, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, Effect of silica on the thermal behaviour and ionic conductivity of mixed salt solid acid composites. J. Alloys Compd. 690, 896–902 (2017). https://doi.org/10.1016/j.jallcom.2016.08.188

    Article  CAS  Google Scholar 

  16. T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, An intermediate temperature proton-conducting electrolyte based on a CsH2PO4/SiP2O7 composite. Electrochem. Solid-State Lett. 8, 256–258 (2005). https://doi.org/10.1149/1.1883906

    Article  CAS  Google Scholar 

  17. D. Singh, J. Singh, P. Kumar, D. Veer, D. Kumar, R.S. Katiyar, A. Kumar, A. Kumar, The influence of TiO2 on the proton conduction and thermal stability of CsH2PO4 composite electrolytes. S. Afr. J. Chem. Eng. 37, 227–236 (2021). https://doi.org/10.1016/j.sajce.2021.06.006

    Article  Google Scholar 

  18. A. Andrio, S.I. Hernández, C. García-Alcántara, L.F. Del Castillo, V. Compañ, I. Santamaría-Holek, Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Phys. Chem. Chem. Phys. 21, 12948–12960 (2019). https://doi.org/10.1039/c8cp07472k

    Article  CAS  Google Scholar 

  19. I.N. Bagryantseva, V.G. Ponomareva, V.R. Khusnutdinov, Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly (vinylidene fluoride-co-hexafluoropropylene). J. Mater. Sci. 56, 14196–14206 (2021). https://doi.org/10.1007/s10853-021-06137-0

    Article  CAS  Google Scholar 

  20. JCPDS File of CsH2PO4 card No.84-0122, Joint Committee on Powder Diffraction Standards

  21. JCPDS File of SiO2 card No. 39-1425, Joint Committee on Powder Diffraction Standards

  22. A.M. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 581, 123821 (2019). https://doi.org/10.1016/j.colsurfa.2019.123821

    Article  CAS  Google Scholar 

  23. S. Hosseini, W.R. Wan Daud, M. Badiei, A.A.H. Kadhum, A.B. Mohammad, Effect of surfactants in the synthesis of CsH2PO4 as protonic conductive membrane. Bull. Mater. Sci. 34, 759–765 (2011). https://doi.org/10.1007/s12034-011-0192-3

    Article  CAS  Google Scholar 

  24. V.V. Martsinkevich, V.G. Ponomareva, Double salts Cs1-xMxH2PO4 (M = Na, K, Rb) as proton conductors. Solid State Ion. 225, 236–240 (2012). https://doi.org/10.1016/j.ssi.2012.04.016

    Article  CAS  Google Scholar 

  25. V.G. Ponomareva, I.N. Bagryantseva, G.V. Lavrova, Proton conductivity and spectral data of Cs2HPO4·2H2O. Russ. J. Electrochem. 53, 636–640 (2017). https://doi.org/10.1134/S1023193517060155

    Article  CAS  Google Scholar 

  26. J. Otomo, T. Ishigooka, T. Kitano, H. Takahashi, H. Nagamoto, Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites. Electrochim. Acta 53, 8186–8195 (2008). https://doi.org/10.1016/j.electacta.2008.06.018

    Article  CAS  Google Scholar 

  27. H. Muroyama, T. Matsui, R. Kikuchi, K. Eguchi, Composite effect on the structure and proton conductivity for CsHSO4 electrolytes at intermediate temperatures. J. Electrochem. Soc. 153, A1077 (2006). https://doi.org/10.1149/1.2189987

    Article  CAS  Google Scholar 

  28. I.N. Bagryantseva, V.G. Ponomareva, N.P. Lazareva, Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Solid State Ion. 329, 61–66 (2019). https://doi.org/10.1016/j.ssi.2018.11.010

    Article  CAS  Google Scholar 

  29. J. Otomo, N. Minagawa, C.J. Wen, K. Eguchi, H. Takahashi, Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ion. 156, 357–369 (2003). https://doi.org/10.1016/S0167-2738(02)00746-4

    Article  CAS  Google Scholar 

  30. S. Wang, J. Otomo, M. Ogura, C.J. Wen, H. Nagamoto, H. Takahashi, Preparation and characterization of proton-conducting CsHSO4-SiO2 nanocomposite electrolyte membranes. Solid State Ion. 176, 755–760 (2005). https://doi.org/10.1016/j.ssi.2004.10.013

    Article  CAS  Google Scholar 

  31. V.G. Ponomareva, E.S. Shutova, New medium-temperature proton electrolytes based on CsH2PO4 and silicophosphate matrices. Inorg. Mater. 50, 1050–1055 (2014). https://doi.org/10.1134/S0020168514100124

    Article  CAS  Google Scholar 

  32. D.A. Boysen, S.M. Haile, H. Liu, R.A. Secco, High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions. Chem. Mater. 15, 727–736 (2003). https://doi.org/10.1021/cm020138b

    Article  CAS  Google Scholar 

  33. V.G. Ponomareva, I.N. Bagryantseva, The influence of Cs2HPO4·H2O impurity on the proton conductivity and thermal properties of CsH2PO4. Solid State Ion. 329, 90–94 (2019). https://doi.org/10.1016/j.ssi.2018.11.021

    Article  CAS  Google Scholar 

  34. Y.K. Taninouchi, T. Uda, Y. Awakura, A. Ikeda, S.M. Haile, Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. J. Mater. Chem. 17, 3182–3189 (2007). https://doi.org/10.1039/b704558c

    Article  CAS  Google Scholar 

  35. E. Ortiz, I. Piñeres, C. León, On the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents: Physical or chemical nature? J. Therm. Anal. Calorim. 126(2), 407–419 (2016). https://doi.org/10.1007/s10973-016-5474-y

    Article  CAS  Google Scholar 

  36. G.V. Lavrova, V.V. Martsinkevich, V.G. Ponomareva, Electrical and thermodynamic properties of Cs0.97Rb0.03H2PO4. Inorg. Mater. 45, 795–801 (2009). https://doi.org/10.1134/S0020168509070164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed according to the plan of research works of K.G.K. College affiliated to M.J.P. Rohilkhand University, Bareilly (India). The authors are thankful to Gurukula Kangri Vishwavidyalaya Haridwar (India) for providing the necessary facilities in the Material Science Research Lab.

Author information

Authors and Affiliations

Authors

Contributions

DS and DV contributed to conceptualization, DS, DV, and PK contributed to methodology, JS, PK, and RSK contributed to formal analysis and investigation, DS and DV contributed to writing and preparation of the original draft, JS, PK, and RSK contributed to writing, reviewing, and editing of the manuscript, JS and PK contributed to funding acquisition, RSK contributed to resources, and JS and PK performed supervision.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Singh, J., Veer, D. et al. Synergistic effect of SiO2 on proton conduction and thermal behavior for nanocomposite electrolyte CsH2PO4 fuel cells. J Mater Sci: Mater Electron 33, 6524–6535 (2022). https://doi.org/10.1007/s10854-022-07827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07827-4

Navigation