Skip to main content
Log in

Microstructure mediated weak ferromagnetism in La-doped CeO2 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetism in La-doped CeO2nanoparticles depends on doping percentage, ordering length, cation-vacancy exchange interaction, cationic segregation at the surface and other factors. This work explores microstructure and low-temperature magnetic property of 4% La-doped CeO2 nanoparticles. Nanoparticles are synthesized by a simple solvothermal method followed by sintering at 550 °C. Microstructural analysis by Rietveld refinement of X-ray diffraction pattern reveals that the compound crystallizes in a face-centered cubic fluorite structure with lattice parameter 5.4326 Å. The calculated crystallite size by Rietveld refinement is ~ 9.4 nm. About 5% oxygen vacancy is created in the compound due to aliovalent doping of Ce+4 cations by La+3 cations. The microstructure of the compound is also confirmed from HRTEM images. The average diameter of well-dispersed spherical nanoparticles is measured as ~ 8–9 nm. The crystal structure of the compound is also verified with the SAED pattern. The EDX spectrum confirms the presence of La dopant along with Ce and O in the compound. The band gap of the compound calculated from the UV–VIS absorption spectrum is ~ 2.81 eV. The 4% La-doped CeO2 dispersed nanoparticles exhibit a weak low-temperature ferromagnetic behaviour. The bifurcation between ZFC and FC is found up to 150 K from M-T measurements. Small hysteresis loops are found at all measuring temperatures. At 50 K, the coercive magnetic field is 232 Oe with remnant magnetization of 0.52 × 10–6 emu/g and saturation magnetization of 1.9 × 10–6 emu/g. Weak ferromagnetism is observed in the nanoparticles as cation-vacancy ferromagnetic interaction is limited by ordering length and dopant segregation on the surface of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. V. Fernandes, P. Schio, A.J.A. de Oliveira, W.A. Ortiz, P. Fichtner, L. Amaral, I.L. Graff, J. Varalda, N. Mattoso, W.H. Schreiner, D.H. Mosca, J. Phys. Condens. Matter 22, 216004 (2010)

    ADS  Google Scholar 

  2. Z. Wang, Z. Quan, J. Lin, Inorg. Chem. 46, 5237 (2007)

    Google Scholar 

  3. J. Fergus, J. Miner. Met. Mater. Soc. 59, 56 (2007)

    Google Scholar 

  4. S. Sato, R. Takahashi, M. Kobune, H. Gotoh, Appl. Catal. A Gen. 356, 57 (2009)

    Google Scholar 

  5. A. Tarancon, Energies 2, 1130 (2009)

    Google Scholar 

  6. A. Larimi, S. Alavi, Fuel 102, 366–371 (2012)

    Google Scholar 

  7. N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, J. Sol-Gel Sci. Technol. 64, 515 (2012)

    Google Scholar 

  8. E. Ruiz-Trejo, J. Phys. Chem. Solids 74, 605 (2013)

    ADS  Google Scholar 

  9. G. Charalampides, K. Vatalis, B. Apostoplos, B. Ploutarch-Nikolas, Proc. Econ. Financ. 24, 126 (2015)

    Google Scholar 

  10. K. Kendall, M. Kendall (eds.), High-temperature solid oxide fuel cells for the 21st century, fundamentals, design and applications (Academic Press, Cambridge, 2015)

    Google Scholar 

  11. S. Scire, L. Palmisano (eds.), Cerium oxide (CeO2): synthesis, properties and applications (Elsevier, Amsterdam, 2019)

    Google Scholar 

  12. C. Xia, Solid oxide fuel cells (CRC Press, Taylor and Francis Group, Boca Raton, 2009), pp.1–72

    Google Scholar 

  13. S.C. Singhal, K. Kendall, High temperature solid oxide fuel cells, fundamentals, design and application (Elsevier, Amsterdam, 2003)

    Google Scholar 

  14. J.W. Fergus, J. Power. Sour. 162, 30–40 (2006)

    ADS  Google Scholar 

  15. V. Fernandes, R.J.O. Mossanek, P. Schio, J.J. Klein, A.J.A. de Oliveira, W.A. Ortiz, N. Mattoso, J. Varalda, W.H. Schreiner, M. Abbate, D.H. Mosca, Phys. Rev. B 80, 035202 (2009)

    ADS  Google Scholar 

  16. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)

    ADS  Google Scholar 

  17. G.R. Li, D.L. Qu, Y.X. Tong, Electrochem. Commun. 10, 80 (2008)

    Google Scholar 

  18. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, Appl. Phys. Lett. 93, 062505 (2008)

    ADS  Google Scholar 

  19. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 024450 (2005)

    ADS  Google Scholar 

  20. J. Osorio-Guillén, S. Lany, S.V. Barabash, A. Zunger, Phys. Rev. B 75, 184421 (2007)

    ADS  Google Scholar 

  21. N.H. Hong, J. Sakai, N. Poirot, V. Brizé, Phys. Rev. B 73, 132404 (2006)

    ADS  Google Scholar 

  22. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)

    ADS  Google Scholar 

  23. S. Banerjee, M. Mandal, N. Gayathri, M. Sardar, Appl. Phys. Lett. 91, 182501 (2007)

    ADS  Google Scholar 

  24. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng. R 62, 1–35 (2008)

    Google Scholar 

  25. G. Rahman, V.M. Garcia-Suarez, C. Hong, Phys. Rev. B 78, 184404 (2008)

    ADS  Google Scholar 

  26. J.M.D. Coey, Solid State Sci. 7, 660–667 (2005)

    ADS  Google Scholar 

  27. A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Müller, J.J. Grob, Phys. Rev. B 76, 125201 (2007)

    ADS  Google Scholar 

  28. T. Tietze, M. Gacic, G. Schütz, G. Jakob, S. Brück, E. Goering, New J. Phys. 10, 055009 (2008)

    ADS  Google Scholar 

  29. M. Venkatesan, R.D. Gunning, P. Stamenov, J.M.D. Coey, J. Appl. Phys. 103, 07D135 (2008)

    Google Scholar 

  30. J.M.D. Coey, R.D. Gunning, M. Venkatesan, P. Stamenov, K. Paul, New J. Phys. 12, 053025 (2010)

    ADS  Google Scholar 

  31. I.S. Elfimov, S. Yunoki, G.A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002)

    ADS  Google Scholar 

  32. M. Coey, K. Ackland, M. Venkatesan, S. Sen, Nat. Phys. 12, 694–699 (2016)

    Google Scholar 

  33. Z. Yang, Z. Yin, Z. Zhao, J. Yu, J. Li, Z. Ren, G. Yu, Mat. Chem. Phys. 240, 122148 (2020)

    Google Scholar 

  34. Y. Jiraskova, J. Bursik, P. Janos, J. Lunacek, A. Chrobak, O. Zivotsky, Metals 9, 222 (2019)

    Google Scholar 

  35. C.H. Xia, C.G. Hu, P. Chen, B.Y. Wan, X.S. He, Y.S. Tian, Mater. Res. Bull. 45, 794–798 (2010)

    Google Scholar 

  36. S.K. Alla, P. Kollu, S.S. Meena, H.K. Poswal, R.K. Mandal, N.K. Prasad, Mater. Res. Bull. 104, 65–71 (2018)

    Google Scholar 

  37. S.K. Alla, P. Kollu, R.K. Mandal, N.K. Prasad, Ceram. Int. 44, 7221–7227 (2018)

    Google Scholar 

  38. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Phys. Rev. B 76, 165206(1)-165206(2) (2007)

    ADS  Google Scholar 

  39. S. Phokha, S. Pinitsoontorn, S. Maensiri, Nano-Micro Lett. 5(4), 223–233 (2013)

    Google Scholar 

  40. S.K. Alla, E.V.P. Komarala, R.K. Mandal, N.K. Prasad, Mater. Chem. Phys. 182, 280–286 (2016)

    Google Scholar 

  41. N. Paunovic, Z. Dohcevic-Mitrovic, R. Scurtu, S. Askrabi, M. Prekajski, B. Matovic, Z.V. Popovic, Nanoscale 4, 5469 (2012)

    ADS  Google Scholar 

  42. W. Lee, S.-Y. Chen, E. Tseng, A. Gloter, C.-L. Chen, J. Phys. Chem. C 120(27), 14874–14882 (2016)

    Google Scholar 

  43. B. Soni, S. Makkar, S. Biswas, Mater Charact 174, 110990 (2021)

    Google Scholar 

  44. S. Soni, N. Chouhan, R. Meena, S. Kumar, B. Dalela, M. Mishra, R. Meena, G. Gupta, S. Kumar, P. Alvi, S. Dalela, Global Chall. 3, 1800090 (2019)

    Google Scholar 

  45. M. Chatterjee, M. Mondal, T. Sukul, S. Mal, K. Ghosh, S. Das, S.K. Pradhan, J. AlloysComp. 942, 169135 (2023)

    Google Scholar 

  46. H.M. Rietveld, Acta Crystallogr. 22, 151–152 (1967)

    Google Scholar 

  47. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    ADS  Google Scholar 

  48. R.A. Young, D.B. Wiles, J. Appl. Crystallogr. 15, 430–438 (1982)

    ADS  Google Scholar 

  49. L. Lutterotti, P. Scardi, P. Maistrelli, J. Appl. Crystallogr. 25, 459–462 (1992)

    ADS  Google Scholar 

  50. R.A. Young, in The Rietveld method. ed. by R.A. Young (Oxford University Press/IUCr, Oxford, 1996), pp.1–38

    Google Scholar 

  51. Lutterotti L. MAUD version 2.7 (2023), http://www.ing.unitn.it/_/luttero/maud. Accessed 5 June 2023

  52. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63–94 (2000)

    Google Scholar 

  53. C. Zhang, A. Michaelides, D.A. King, S.J. Jenkins, Phys. Rev. B 79, 075433 (2009)

    ADS  Google Scholar 

  54. J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Phys. Rev. B 64, 24540 (2001)

    Google Scholar 

  55. M. Chandra Dimri, H. Khanduri, H. Kooskora, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Phys. Status Solidi A 209(2), 353–358 (2012)

    ADS  Google Scholar 

  56. F. Ye, T. Mori, D.R. Ou, G. Auchterlonie, J. Zou, J. Drennan, J. Appl. Phys. 101, 113528 (2007)

    ADS  Google Scholar 

  57. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Phys. Status Solidi B 255, 1800179 (2018)

    ADS  Google Scholar 

  58. A. Sundaresan, C.N.R. Rao, Nano Today 4, 96–106 (2009)

    Google Scholar 

  59. S.-Y. Chen, Y.-H. Lu, T.-W. Huang, D.-C. Yan, C.-L. Dong, J. Phys. Chem. C 114, 19576–19581 (2010)

    Google Scholar 

  60. X. Chen, L. Guangshe, S. Yiguo, Q. Xiaoqing, L. Liping, Z. Zhigang, Nanotechnology 20, 115606 (2009)

    ADS  Google Scholar 

  61. M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, S. Yan, Appl. Phys. Lett. 94, 152511 (2009)

    ADS  Google Scholar 

  62. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    ADS  Google Scholar 

  63. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    ADS  Google Scholar 

  64. S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, J. Phys. Chem. C 116, 8707–8713 (2012)

    Google Scholar 

  65. R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, E.B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Department of Science and Technology, Govt. of India for creating PPMS facility in the Dept. of Physics, The University of Burdwan under the Departmental FIST program (Grant No. SR/FST/PS-II-001/2011). Authors are also thankful to XRD facility of the Dept. of Physics, created by the University Grants Commission under CAS-II program (File no. F.530/20/CAS-II/2018(SAP-I)) and USIC Dept. for providing UV-Vis and HRTEM facilities.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to conceptualization of the study. Material preparation and data collection were done by Mahasweta Chatterjee. Data analyses were done by Anshuman Nandy. The first draft of the manuscript was written by Anshuman Nandy and all authors edited, commented and corrected the previous versions. The work was supervised and manuscript was finalized by Swapan Kumar Pradhan. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Swapan Kumar Pradhan.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or any other conflict of interest to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, A., Chatterjee, M. & Pradhan, S.K. Microstructure mediated weak ferromagnetism in La-doped CeO2 nanoparticles. Appl. Phys. A 130, 250 (2024). https://doi.org/10.1007/s00339-024-07392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07392-z

Keywords

Navigation