Skip to main content
Log in

Effect of humidity on grinding force of TiAl alloy at nanometer scale

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiAl alloy is a new kind of lightweight high temperature resistant structural material. Its density is only about half of that of nickel-based superalloy. It is an excellent substitute material for nickel-based superalloy. TiAl alloy is a brittle material that needs to be processed in the plastic domain on the nanoscale. Due to the influence of humidity, a thin water film will inevitably condenses on the processed surface. Therefore, it is necessary to consider the role of humidity in nanofabrication. The results show that when the water layer thickness is 0, 4 Å and 8 Å, the maximum tangential grinding force is 165 nN, 266 nN and 386 nN, and the maximum normal grinding force is 517 nN, 521 nN and 528 nN, respectively. Compared with the normal grinding force, the stress value of tangential grinding force changes more obviously. The variation of the peak value of radial distribution function (RDF) around Al atoms before and after grinding is smaller than that of Ti. From the second peak to the sixth peak, with the increasing of the water layer thickness, the peak of the wave crest gradually decreases. When the grinding wheel is rotating forward, the maximum tangential grinding force is 266 nN and the maximum normal grinding force is 521 nN, when the wheel is rotating backward, the maximum tangential grinding force is 497 nN and the maximum normal grinding force is 451 nN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data on which the study is based were accessed from a repository and are available for downloading through the following link. https://lammpstube.com/mdpotentials/.

References

  1. X. Huang, Z. Li, H. Huang, Research progress of new high temperature titanium alloys for high thrust-to-weight ratio aero engines. Adv. Mater. China 30(6), 21–27 (2011)

    ADS  Google Scholar 

  2. R. Gerling, F.P. Schimansky, A. Stark et al., Microstructure and mechanical properties of Ti 45Al 5Nb+(0–0.5 C) sheets. Intermetallics 16(5), 689–697 (2008)

    Article  Google Scholar 

  3. J. Crespo-Villegas, M. Cavarroc, S. Knittel et al., Protective TixSiy coatings for enhanced oxidation resistance of the ɣ-TiAl alloy at 900 C. Surf. Coat. Technol. 430, 127963 (2022)

    Article  Google Scholar 

  4. F. Klocke, S.L. Soo, B. Karpuschewski et al., Abrasive machining of advanced aerospace alloys and composites. CIRP Ann. 64(2), 581–604 (2015)

    Article  Google Scholar 

  5. D.K. Aspinwall, R.C. Dewes, A.L. Mantle, The machining of γ-TiAI intermetallic alloys. CIRP Ann. 54(1), 99–104 (2005)

    Article  Google Scholar 

  6. X.X. Xi, T.Y. Yu, W.F. Ding et al., Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: tool surface topology effect on grinding force and ground surface quality. Precis. Eng. 53, 134–145 (2018)

    Article  Google Scholar 

  7. X.X. Xi, W.F. Ding, Z. Li et al., High speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel. Int. J. Adv. Manuf. Technol. 90, 1529–1538 (2017)

    Article  Google Scholar 

  8. A. Beranoagirre, L.N. Lópezdelacalle, Grinding of gamma TiAl intermetallic alloys. Procedia Eng. 63, 489–498 (2013)

    Article  Google Scholar 

  9. R. Hood, P. Cooper, D.K. Aspinwall, S.L. Soo, D.S. Lee, Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels. Manuf. Sci. Technol. 11, 36–44 (2015)

    Article  Google Scholar 

  10. A.L. Mantle, D.K. Aspinwall, Surface integrity of a high speed milled gamma titanium aluminide. J. Mater. Process. Technol. 118(1–3), 143–150 (2001)

    Article  Google Scholar 

  11. A.L. Mantle, D.K. Aspinwall, Cutting force evaluation when high speed end milling a gamma titanium aluminide intermetallic alloy. Intermetall. Superalloys 10, 209–215 (2000)

    Article  Google Scholar 

  12. R. Hood, F. Lechner, D.K. Aspinwall, W. Voice, Creep feed deep grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. Int. J. Mach. Tool Manuf. 47, 1486–1492 (2007)

    Article  Google Scholar 

  13. R. Hood, P. Cooper, D.K. Aspinwall et al., Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels. CIRP J. Manuf. Sci. Technol. 11, 36–44 (2015)

    Article  Google Scholar 

  14. X. Xi, W. Ding, Y. Fu et al., Grindability evaluation and tool wear during grinding of Ti2AlNb intermetallics. Int. J. Adv. Manuf. Technol. 94, 1441–1450 (2018)

    Article  Google Scholar 

  15. S. Biyik, F. Arslan, M. Aydin, Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. J. Electron. Mater. 44, 457–466 (2015)

    Article  ADS  Google Scholar 

  16. S. Biyik, M. Aydin, The effect of milling speed on particle size and morphology of Cu25W composite powder. Acta Phys. Pol. A 127(4), 1255–1260 (2015)

    Article  ADS  Google Scholar 

  17. S. Biyik, Characterization of nanocrystalline Cu25Mo electrical contact material synthesized via ball milling. Acta Phys. Pol. A 132(3), 886–888 (2017)

    Article  ADS  Google Scholar 

  18. S. Biyik, M. Aydin, Optimization of mechanical alloying parameters of Cu25W electrical contact material. Acta Phys. Pol. A 132(3), 909–912 (2017)

    Article  ADS  Google Scholar 

  19. S. Biyik, M. Aydin, Fabrication and arc-erosion behavior of Ag8SnO2 electrical contact materials under inductive loads. Acta Phys. Pol. A 131(3), 339–342 (2017)

    Article  ADS  Google Scholar 

  20. S. Biyik, Effect of reinforcement ratio on physical and mechanical properties of Cu–W composites synthesized by ball milling. Mater. Focus 7(4), 535–541 (2018)

    Article  Google Scholar 

  21. S. Biyik, Effect of polyethylene glycol on the mechanical alloying behavior of Cu–W electrical contact material. Acta Phys. Pol. A 134(1), 208–212 (2018)

    Article  ADS  Google Scholar 

  22. S. Biyik, Effect of cubic and hexagonal boron nitride additions on the synthesis of Ag–SnO2 electrical contact material. J. Nanoelectron. Optoelectron. 14(7), 1010–1015 (2019)

    Article  Google Scholar 

  23. S. Biyik, Influence of type of process control agent on the synthesis of Ag8ZnO composite powder. Acta Phys. Pol. A 135(4), 778–781 (2019)

    Article  ADS  Google Scholar 

  24. O. Güler, T. Varol, Ü. Alver et al., The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating. Adv. Powder Technol. 32(8), 2873–2890 (2021)

    Article  Google Scholar 

  25. S. Liu, H. Ding, H. Zhang et al., High-density deformation nanotwin induced significant improvement in the plasticity of polycrystalline γ-TiAl-based intermetallic alloys. Nanoscale 10(24), 11365–11374 (2018)

    Article  Google Scholar 

  26. C. Yao, J. Lin, D. Wu et al., Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts. Chin. J. Aeronaut. 31(4), 826–836 (2018)

    Article  Google Scholar 

  27. M.J. Jackson, G.M. Robinson, M.D. Whitfield et al., Micro-and Nanomachining [M]//Emerging Nanotechnologies for Manufacturing (William Andrew Publishing, Norwich, 2015), pp.202–229

    Book  Google Scholar 

  28. B. Li, F. Liu, C. Li et al., Effect of Cr element on the microstructure and oxidation resistance of novel NiAl-based high temperature lubricating composites. Corros. Sci.. Sci. 188, 109554 (2021)

    Article  Google Scholar 

  29. Z. Ou, W. Wu, H. Dai, Molecular dynamics simulation-based study of single-crystal 3C-SiC nano-indentation with water film. Appl. Phys. A 129(9), 658 (2023)

    Article  ADS  Google Scholar 

  30. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443 (1984)

    Article  ADS  Google Scholar 

  31. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)

    Article  ADS  Google Scholar 

  32. Z.P. Hao, R.R. Cui, Y.H. Fan et al., Diffusion mechanism of tools and simulation in nanoscale cutting the Ni–Fe–Cr series of nickel-based superalloy. Int. J. Mech. Sci. 150, 625–636 (2018)

    Article  Google Scholar 

  33. T. Liang, P. Zhang, P. Yuan et al., In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study. Phys. Chem. Chem. Phys. 20(32), 21151–21162 (2018)

    Article  Google Scholar 

  34. A.K. Rappé, C.J. Casewit, K.S. Colwell et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)

    Article  Google Scholar 

  35. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    Google Scholar 

  36. B. Wang, W. Qiang, T. Wang et al., Molecular dynamics simulation of wetting behavior of nano-water droplets on nano-rough wall. J. Chem. Eng. Univ. 31(5), 1169–1176 (2017)

    Google Scholar 

  37. S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990)

    Article  Google Scholar 

  38. L.A. Girifalco, V.G. Weizer, Application of the Morse potential function to cubic metals. Phys. Rev. 114(3), 687 (1959)

    Article  ADS  Google Scholar 

  39. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566 (1989)

    Article  ADS  Google Scholar 

  40. R.L. Hecker, S.Y. Liang, X.J. Wu et al., Grinding force and power modeling based on chip thickness analysis. Int. J. Adv. Manuf. Technol. 33, 449–459 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LC contributed fully to the work.

Corresponding author

Correspondence to Lijun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5686 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Effect of humidity on grinding force of TiAl alloy at nanometer scale. Appl. Phys. A 130, 234 (2024). https://doi.org/10.1007/s00339-024-07387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07387-w

Keywords

Navigation