Skip to main content
Log in

Modeling and simulation of an InGaP/GaAs heterojunction betavoltaic cell powered by promethium-147

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nuclear microbatteries based on semiconductor heterojunction cells are promising designs to achieve efficient energy conversion of the particles emitted from a radioactive source into electrical energy. Selecting semiconductors with appropriate device structure and radiation source effectively improve their output performance. In this study, we investigated an In0.49Ga0.51P/GaAs betavoltaic heterojunction cell powered by Promethium-147 (Pm147) irradiation, which emits negative beta-particles with an average kinetic energy of 61.93 keV, using a lab-made software. Simulations of cell's current density–voltage J(V) and output electric power P(V) characteristics are carried out using a comprehensive analytical model. The proposed model accounted for ohmic losses, the reflection of incident beta-particles from the front surface, limits of the space charge region, and metallurgical border effects. To optimize the cell's performance, we performed several simulations, varying the doping concentrations and base thicknesses in the device structure and the surface recombination velocities in the front and back regions. Moreover, we assumed different values of the Pm147 apparent activity density. The obtained results are very encouraging showing that Pm147 coupled with InGAP/GaAs heterojunction is very suitable solution for this kind of power generation. Alternative beta radiation sources, namely: H3, Ni63, Co60, Cs137, and Sr90, are also considered for the comparison. The computed electrical power density of the improved cell reaches to 436.66 nW cm−2, while the conversion efficiency is close to 11.91% when irradiated by Pm147. These values could increase to 1441.29 nW cm−2 and 12.43% when Sr90 (Strontium-90) is used as the emitting source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [F Bouzid] upon reasonable request.

References

  1. M. Prelas, M. Boraas, F. Aguilar, J.D. Seelig, M.T. Tchouaso, D. Wisniewski, Lecture Notes in Energy. Nuclear Batteries and Radioisotopes vol. 56 (Springer, Cham, 2016)

    Book  Google Scholar 

  2. P. Rappaport, The electron-voltaic effect in p–n junctions induced by beta particle bombardment. Phys. Rev. 93, 246 (1953)

    Article  ADS  Google Scholar 

  3. A. Krasnov, S. Legotin, K. Kuzmina, N. Ershova, B. Rogozev, A nuclear battery based on silicon p-i–n structures with electroplating 63Ni layer. Nucl. Eng. Technol. 51, 1978–1982 (2019)

    Article  Google Scholar 

  4. J. Dixon, A. Rajan, S. Bohlemann, D. Coso, A.D. Upadhyaya, A. Rohatgi, S. Chu, A. Majumdar, S. Yee, Evaluation of a silicon 90Sr betavoltaic power source. Sci. Rep. 6, 38182 (2016). https://doi.org/10.1038/srep38182

    Article  ADS  Google Scholar 

  5. F. Bouzid, F. Pezzimenti, L. Dehimi, Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell. Nucl. Inst. Methods Phys. Res. A 969, 164103 (2020)

    Article  Google Scholar 

  6. R.K. Yürük, H. Tütüncüler, Theoretical investigation of high-efficiency GaN–Si heterojunction betavoltaic battery. Can. J. Phys. 97(9), 1031–1038 (2019). https://doi.org/10.1139/cjp-2018-0579

    Article  ADS  Google Scholar 

  7. C.E. Munson, Q. Gaimard, K. Merghem, S. Sundaram, D.J. Rogers, J. de Sanoit, P.L. Voss, A. Ramdane, J.P. Salvestrini, A. Ougazzaden, Modeling, design, fabrication and experimentation of a GaN-based 63Ni betavoltaic battery. J. Phys. D Appl. Phys. 51, 035101 (2018). https://doi.org/10.1088/1361-6463/aa9e41

    Article  ADS  Google Scholar 

  8. F. Bouzid, M.A. Saeed, R. Carotenuto, F. Pezzimenti, Design considerations on 4H-SiC-based p–n junction betavoltaic cells. Appl. Phys. A 128, 234 (2022). https://doi.org/10.1007/s00339-022-05374-7

    Article  ADS  Google Scholar 

  9. Y.M. Liu, J.B. Lu, X. Xu et al., A 4H-SiC betavoltaic battery based on a 63Ni source. Nucl. Sci. Tech. 29, 168 (2018)

    Article  ADS  Google Scholar 

  10. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov, A.Y. Polyakov, E.B. Yakimov, Betavoltaic battery performance: comparison of modeling and experiment. Appl. Radiat. Isot. 137, 184–189 (2018)

    Article  Google Scholar 

  11. S. Theirrattanakul, M. Prelas, A methodology for efficiency optimization of betavoltaic cell design using anisotropic planar source having an energy dependent beta particle distribution. Appl. Radiat. Isot. 127, 41–46 (2017)

    Article  Google Scholar 

  12. T.R. Alam, M.G. Spencer, M.A. Prelas, M.A. Pierson, Design and optimization of radioisotope sources for betavoltaic batteries. Int. J. Energy Res. 42, 2564–2573 (2018). https://doi.org/10.1002/er.4053

    Article  Google Scholar 

  13. L. Zhang, H.L. Cheng, X.C. Hu, X.B. Xu, Model and optimal design of 147Pm SiC-based betavoltaic cell. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.01.007

    Article  Google Scholar 

  14. V. Bormashov, S. Troschiev, A. Volkov, S. Tarelkin, E. Korostylev, A. Golovanov, M. Kuznetsov, D. Teteruk, N. Kornilov, S. Terentiev, S. Buga, V. Blank, Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status Solidi A 212(11), 2539–2547 (2015). https://doi.org/10.1002/pssa.201532214

    Article  ADS  Google Scholar 

  15. Y.-M. Liu, J.-B. Lu, X.-Y. Li, X. Xu, R. He, R.-Z. Zheng, G.-D. Wei, Theoretical prediction of diamond betavoltaic batteries performance using 63Ni. Chin. Phys. Lett. 35(7), 072301 (2018). https://doi.org/10.1088/0256-307X/35/7/072301

    Article  ADS  Google Scholar 

  16. M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019). https://doi.org/10.1063/1.5123163

    Article  ADS  Google Scholar 

  17. V.P. Khvostikov, V.S. Kalinovskiy, S.V. Sorokina, O.A. Khvostikova, V.M. Andreev, Tritium power supply sources based on AlGaAs/GaAs heterostructures. Tech. Phys. Lett. 45(12), 1197–1199 (2019)

    Article  ADS  Google Scholar 

  18. V.P. Khvostikov, V.S. Kalinovskiy, S.V. Sorokina, M.Z. Shvarts, N.S. Potapovich, O.A. Khvostikova, A.S. Vlasov, V.M. Andreev, AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation. Semiconductors 52(13), 1754–1757 (2018)

    Article  ADS  Google Scholar 

  19. V.M. Andreev, A.G. Kavetskf, V.S. Kalinovsky, V.P. Khvostikov, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, E.V. Yakimova, V.A. Ustinov, Tritium-powered betacells based on AlxGa1−xAs. https://doi.org/10.1109/PVSC.2000.916117

  20. F. Bouzid, S. Dehimi, M. Hadjab, M.A. Saeed, F. Pezzimenti, Performance prediction of AlGaAs/GaAs betavoltaic cells irradiated by nickel-63 radioisotope. Physica B. 607, 412850 (2021)

    Article  Google Scholar 

  21. S. Butera, G. Lioliou, A.M. Barnett, Temperature effects on gallium arsenide 63Ni betavoltaic cell. Appl. Radiat. Isot. 125, 42–47 (2017)

    Article  Google Scholar 

  22. A. Waris, Y. Kusumawati, A.S. Alfarobi, I.K. Aji, K. Basar, Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate. AIP Conf. Proc. 1719, 030053 (2016). https://doi.org/10.1063/1.4943748

    Article  Google Scholar 

  23. S. Butera, M.D.C. Whitaker, A.B. Krysa, A.M. Barnett, Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell. J. Phys. D Appl. Phys. 50, 345101 (2017)

    Article  ADS  Google Scholar 

  24. C.D. Cress, B.J. Landi, R.P. Raffaelle, Modeling laterally-contacted nipi-diode radioisotope batteries. IEEE Trans. Nucl. Sci. 55(3) (2008)

  25. C.D. Cress, B.J. Landi, R.P. Raffaelle, InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J. Appl. Phys. 100, 114519 (2006)

    Article  ADS  Google Scholar 

  26. F. Bouzid, E. Kayahan, F. Pezzimenti, Thorium-228 as emitting source for InGaP/GaAs-based heterojunction alphavoltaic cells. Appl. Phys. A 129, 554 (2023). https://doi.org/10.1007/s00339-023-06829-1

    Article  ADS  Google Scholar 

  27. D.Y. Qiao, X.J. Chen, Y. Ren, W.Z. Yuan, A micro nuclear battery based on SiC Schottky barrier diode. J. Microelectromech. Syst. 20, 685–690 (2011)

    Article  Google Scholar 

  28. A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, M.R. Kulish, I.O. Sokolovsky, Efficiency analysis of betavoltaic elements. Solid-State Electron. 111, 147–152 (2015)

    Article  ADS  Google Scholar 

  29. Z. Lin, Simulation and optimization design of SiC-based PN betavoltaic microbattery using tritium source. Crystals 10, 105 (2020). https://doi.org/10.3390/cryst10020105

    Article  Google Scholar 

  30. H. Flicker, J.J. Loferski, T.S. Elleman, Construction of a promethium-147 atomic battery. IEEE Trans. Electron Devices 11(1), 2–8 (1964)

    Article  ADS  Google Scholar 

  31. G.C. Rybicki, Silicon carbide radioisotope batteries. NASA/CP-2001-210747/REV1, p 200 (2001)

  32. R.J. Walters, M.A. Xapsos, H.L. Cotal, S.R. Messenger, G.P. Summers, P.R. Sharps, M.L. Timmons, Radiation response and injection annealing of p+nInGaP solar cells. Solid-State Electron. 42, 1747–1756 (1998)

    Article  ADS  Google Scholar 

  33. Y. Okuno, S. Okuda, T. Oka, S. Kawakita, M. Imaizumi, Performance degradation of InGaP solar cells due to 70 keV electron irradiation. Jpn. J. Appl. Phys. 56, 081203 (2017). https://doi.org/10.7567/JJAP.56.081203

    Article  ADS  Google Scholar 

  34. V. Elkina, M. Kurushkin, Promethium: to strive, to seek, to find and not to yield. Front. Chem. 8(588), 1–8 (2020). https://doi.org/10.3389/fchem.2020.00588

    Article  Google Scholar 

  35. F. Bouzid, F. Pezzimenti, L. Dehimi, F.G. Della Corte, M. Hadjab, A.H. Larbi, Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J. Electron. Mater. 48, 4107 (2019)

    Article  ADS  Google Scholar 

  36. W. Duan, A. Lambertz, K. Bittkau, D. Qiu, K. Qiu, U. Rau, K. Ding, A route towards high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 30, 384–392 (2022)

    Article  Google Scholar 

  37. Y. Liu, Y. Li, Y. Wu, G. Yang, L. Mazzarella, P. Procel-Moya, A.C. Tamboli, K. Weber, M. Boccard, O. Isabella, X. Yang, B. Sun, High-efficiency silicon heterojunction solar cells: materials, devices and applications. Mater. Sci. Eng. R. Rep. 142, 100579 (2020)

    Article  Google Scholar 

  38. B. Kınacı, Y. Özen, T. Asar, S.Ş Çetin, T. Memedli, M. Kasap, S. Özçelik, Study on growth and characterizations of GaxIn1xP/GaAs solar cell structure. J. Mater. Sci. Mater. Electron. 24, 3269–3274 (2013). https://doi.org/10.1007/s10854-013-1242-y

    Article  Google Scholar 

  39. S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Interscience, New York, 2006)

    Book  Google Scholar 

  40. https://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html. Last accessed on: 25/01/2024

  41. https://www.ioffe.ru/SVA/NSM/Semicond/GaInP/basic.html. Last accessed on: 25/01/2024

  42. J. Magill, G. Pfennig, J. Galy, Karlsruher Nuklidkarte, 7. European Commission Joint Research Centre Institute for Transuranium Elements (2006)

  43. K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, 1st edn. (CRC Press, New York, 2002)

    Book  Google Scholar 

  44. A.W. Haas, J.R. Wilcox, J.L. Gray, R.J. Schwartz, Design of a GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J. Photon. Energy. 1, 018001 (2011)

    Article  Google Scholar 

  45. M.E. Levinshtein, S.L. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters, vol. 1 (World Scientific, London, 1996), pp.77–103

    Google Scholar 

  46. A. Dargys, J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994)

    Google Scholar 

  47. M.Y. Ghannam, A.S. Al Omar, N. Posthuma, G. Flammand, J. Poortmans, Optimization of the triple junction In0.5Ga0.5P/GaAs/Ge monolithic tandem cell aimed for terrestrial applications using an experimentally verified analytical model. Kuwait J. Sci. Eng. 31(2), 203–234 (2004)

    Google Scholar 

  48. S.C. Jain, D.J. Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1x strained layers. Solid-State Electron. 34(5), 453–465 (1991)

    Article  ADS  Google Scholar 

  49. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192 (1967)

    Article  Google Scholar 

  50. M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87, 2890 (2000)

    Article  ADS  Google Scholar 

  51. Y. Da, Y. Xuan, Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. Opt. Express 21(S6), 1065–1077 (2013). https://doi.org/10.1364/OE.21.0A1065

    Article  ADS  Google Scholar 

  52. F. Saeed, T.U. Rehman, A. Zohaib, A. Farid, M.H. Khan, M.A. Khan, H.A. Tauqeer, A. Idrees, Unveiling surface recombination velocity influence on the device characteristics for the formamidinium perovskite solar cell. Eng. Proc. 20(4), 1–6 (2022). https://doi.org/10.3390/engproc2022020004

    Article  Google Scholar 

  53. T.P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, A.N. Tiwari, Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements. Sci. Rep. 9(5385), 1–13 (2019). https://doi.org/10.1038/s41598-01941716-x

    Article  ADS  Google Scholar 

  54. K. Ali, H.M. Khan, M. Anmol, I.A. Ahmad, W.A. Farooq, B.A. Al-Asbahi, S.M. Qaid, H.M. Ghaithan, Effect of surface recombination velocity (SRV) on the efficiency of silicon solar cell. J. Optoelectron. Adv. Mater. 22(5–6), 251–255 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. Bouzid: conceptualization, data curation, formal analysis, investigation, methodology, supervision, visualization, writing—original draft, and writing—review and editing. E. Kayahan: validation, and writing—review and editing. M. A. Saeed: validation and writing—review and editing. F. Pezzimenti: validation, and writing—review and editing.

Corresponding author

Correspondence to F. Bouzid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, F., Kayahan, E., Saeed, M.A. et al. Modeling and simulation of an InGaP/GaAs heterojunction betavoltaic cell powered by promethium-147. Appl. Phys. A 130, 222 (2024). https://doi.org/10.1007/s00339-024-07377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07377-y

Keywords

Navigation