Skip to main content

Advertisement

Log in

Design considerations on 4H-SiC-based p–n junction betavoltaic cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have theoretically evaluated the performance of a betavoltaic 8 µm-thick p-n structure in silicon carbide 4H (4H-SiC) irradiated by different nickel-63 (Ni63) beta particle sources. The apparent average energy of the emitted beta particles is in the range 18.44–29.94 keV considering the self-absorption effect. By taking into account the reflection on the frontal surface as well as the limits of the depletion region, and by using an equivalent circuit that supports the ohmic losses, the simulations reveal that with the use of a Ni63 radioactive source, with a radioactivity density of 18.76 mCi/cm2, the conversion efficiency (ɳ) exceeds 20%. For the optimized cell, the other important electrical parameters, namely the short-circuit current density (Jsc), the open-circuit voltage (Voc), fill factor (FF) and the maximum electrical power density (Pmax), are 0.299 µA/cm2, 2.4 V, 93.79% and 0.675 µW/cm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Prelas, M. Boraas, F. Aguilar, J.D. Seelig, M.T. Tchouaso, D. Wisniewski. Lecture Notes in Energy. Nuclear Batteries and Radioisotopes (Vol. 56). Switzerland: Springer, 2016

  2. P. Rappaport, The electron-voltaic effect in p–n junctions induced by beta particle bombardment. Phys. Rev. 93, 246 (1953)

    Article  ADS  Google Scholar 

  3. C.H. Yang, Y. Jianhua, L. Darang, Electrode pattern design for GaAs betavoltaic batteries. J. Semicond. 32(8), 084006 (2011)

    Article  Google Scholar 

  4. C.H. Yang, J. Lan, L.D. Rang, Measurement of beta particles induced electron-hole pairs recombination in depletion region of GaAs PN junction. Chin. Phys. Lett. 28(5), 058101 (2011)

    Article  ADS  Google Scholar 

  5. H. Chen, L. Jiang, X. Chen, Design optimization of GaAs betavoltaic batteries. J. Phys. D: Appl. Phys. 44, 215303 (2011)

    Article  ADS  Google Scholar 

  6. S. Butera, G. Lioliou, A.M. Barnett, Temperature effects on gallium arsenide 63Ni betavoltaic cell. Appl. Radiat. Isot. 125, 42–47 (2017)

    Article  Google Scholar 

  7. A. Waris, Y. Kusumawati, A.S. Alfarobi, I.K. Aji, K. Basar, Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate. AIP Conf. Proc. 1719, 030053 (2016). https://doi.org/10.1063/1.4943748

    Article  Google Scholar 

  8. V.P. Khvostikov, V.S. Kalinovskii, S.V. Sorokina, O.A. Khvostikova, V.M. Andreev, Tritium power supply sources based on AlGaAs/GaAs heterostructures. Tech. Phys. Lett. 45(12), 1197–1199 (2019)

    Article  ADS  Google Scholar 

  9. V.P. Khvostikov, V.S. Kalinovskiy, S.V. Sorokina, M.Z. Shvarts, N.S. Potapovich, O.A. Khvostikova, A.S. Vlasov, V.M. Andreev, AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation. Semiconductors 52(13), 1754–1757 (2018)

    Article  ADS  Google Scholar 

  10. V.M. Andreev, A.G. Kavetskf , V.S. Kalinovsky,V.P. Khvostikov, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, E.V. Yakimova, V.A. Ustinov. Tritium-powered betacells based on AlxGa1-xAs. https://doi.org/10.1109/PVSC.2000.916117

  11. K. Xu, L. Huang, Z. Zhang, J. Zhao, Z. Zhang, L.W. Snyman, J.W. Swart, Light emission from a poly-silicon device with carrier injection engineering. Mater. Sci. Eng. B 231, 28–31 (2018)

    Article  Google Scholar 

  12. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov, A.Y. Polyakov, E.B. Yakimov, Betavoltaic battery performance: comparison of modeling and experiment. Appl. Radiat. Isot. 137, 184–189 (2018)

    Article  Google Scholar 

  13. Y.M. Liu, J.B. Lu, X. Xu et al., A 4H-SiC betavoltaic battery based on a 63Ni source. Nucl. Sci. Tech. 29, 168 (2018)

    Article  ADS  Google Scholar 

  14. S. Theirrattanakul, M. Prelas, A methodology for efficiency optimization of betavoltaic cell design using anisotropic planar source having an energy dependent beta particle distribution. Appl. Radiat. Isot. 127, 41–46 (2017)

    Article  Google Scholar 

  15. T.R. Alam, M.G. Spencer, M.A. Prelas, M.A. Pierson, Design and optimization of radioisotope sources for betavoltaic batteries. Int. J. Energy Res. 42, 2564–2573 (2018). https://doi.org/10.1002/er.4053

    Article  Google Scholar 

  16. X.Y. Li, Y. Ren, X.J. Chen, D.Y. Qiao, W.Z. Yuan, 63Ni schottky barrier nuclear battery of 4H-SiC. J. Radioanal. Nucl. Chem. 287, 173 (2011)

    Article  Google Scholar 

  17. C. Thomas, S. Portnoff, M.G. Spencer, High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 108, 013505 (2016)

    Article  ADS  Google Scholar 

  18. D.Y. Qiao, X.J. Chen, Y. Ren, W.Z. Yuan, A micro nuclear battery based on SiC Schottky barrier diode. J Microelectromech Syst. 20, 685–690 (2011)

    Article  Google Scholar 

  19. L. Zhang, H.L. Cheng, X.C. Hu, X.B. Xu, Model and optimal design of 147Pm SiC-based betavoltaic cell. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.01.007

    Article  Google Scholar 

  20. F. Bouzid, F. Pezzimenti, L. Dehimi, Modelling and performance analysis of a GaN based n/p junction betavoltaic cell. Nuclear Inst. Methods Phys. Res. A 969, 164103 (2020)

    Article  Google Scholar 

  21. R.K. Yürük, H. Tütüncüler, Theoretical investigation of high-efficiency GaN–Si heterojunction betavoltaic battery. Can. J. Phys. 97(9), 1031–1038 (2019). https://doi.org/10.1139/cjp-2018-0579

    Article  ADS  Google Scholar 

  22. M. Lu, G. Wang, C. Yao, Gallium Nitride for nuclear batteries. Adv. Mater. Res. 343, 56–61 (2012)

    Google Scholar 

  23. C.E. Munson, Q. Gaimard, K. Merghem, S. Sundaram, D.J. Rogers, J. de Sanoit, P.L. Voss, A. Ramdane, J.P. Salvestrini, A. Ougazzaden, Modeling, design, fabrication and experimentation of a GaN-based 63Ni betavoltaic battery. J. Phys. D Appl. Phys. 51(3), 035101 (2018)

    Article  ADS  Google Scholar 

  24. M. Lu, G.G. Zhang, K. Fu, G.H. Yu, D. Su, J.F. Hu, Gallium Nitride Schottky betavoltaic nuclear batteries. Energy Convers. Manage. 52, 1955–1958 (2011)

    Article  Google Scholar 

  25. Z.J. Cheng, H.S. San, Z.H. Feng, B. Liu, X.Y. Chen, High open circuit voltage betavoltaic cell based on GaN pin homojunction. Electron. Lett. 47(12), 720 (2011)

    Article  ADS  Google Scholar 

  26. S. Butera, M.D.C. Whitaker, A.B. Krysa, A.M. Barnett, Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell. J. Phys. D: Appl. Phys. 50, 345101 (2017)

    Article  ADS  Google Scholar 

  27. C.D. Cress, B.J. Landi, R.P. Raffaelle, InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J Appl. Phys. 100(11), 114519 (2006)

    Article  ADS  Google Scholar 

  28. M.V.S. Chandrashekhar, C.I. Thomas, H. Li, M.G. Spencer, A. Lal, Demonstration of a 4HSiC betavoltaic cell. Appl. Phys. Lett. 88, 033506 (2006)

    Article  ADS  Google Scholar 

  29. C.J. Eiting, V. Krishnamoorthy, S. Rodgers, T. George, Demonstration of a radiation resistant, high efficiency SiC betavoltaic. Appl. Phys. Lett. 88, 064101 (2006)

    Article  ADS  Google Scholar 

  30. A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, M.R. Kulish, I.O. Sokolovsky, Efficiency analysis of betavoltaic elements. Solid-State Electron. 111, 147–152 (2015)

    Article  ADS  Google Scholar 

  31. H. Guo, Y. Shi, Y. Zhang, Y. Zhang, J. Han, Fabrication of SiC p–i–-n betavoltaic cell with 63Ni irradiation source, in 2011 IEEE International Conference of Electron Devices and Solid-State Circuits, EDSSC 2011.

  32. Z. Lin, Simulation and optimization design of SiC-based PN betavoltaic microbattery using tritium source. Curr. Comput.-Aided Drug Des. 10, 105 (2020). https://doi.org/10.3390/cryst10020105

    Article  Google Scholar 

  33. J. Dixon, A. Rajan, St. Bohlemann, D. Coso, A.D. Upadhyaya, A. Rohatgi, S. Chu, A. Majumdar, S. Yee, Evaluation of a Silicon 90Sr Betavoltaic Power Source. Sci Rep. 6, 38182 (2016). https://doi.org/10.1038/srep38182

    Article  ADS  Google Scholar 

  34. C.O. Larry, C. Peter, J.E. Bret, Betavoltaic power sources. Phys. Today 65, 35 (2012). https://doi.org/10.1063/PT.3.1820

    Article  Google Scholar 

  35. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39(4), 2029–2038 (1968). https://doi.org/10.1063/1.1656484

    Article  ADS  Google Scholar 

  36. F. Bouzid, S. Dehimi, M. Hadjab, M.A. Saeed, F. Pezzimenti, Performance prediction of AlGaAs/GaAs betavoltaic cells irradiated by nickel-63 radioisotope. Physica B: Phys. of Conden. Matter. 607, 412850 (2021)

    Article  Google Scholar 

  37. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, F.G. Della Corte, Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn. J. Appl. Phys. 56, 094301 (2017)

    Article  ADS  Google Scholar 

  38. F. Bouzid, L. Dehimi, F. Pezzimenti, Performance analysis of a Pt/n-GaN Schottky barrier detector. J. Electron Mater. 46, 6563 (2017)

    Article  ADS  Google Scholar 

  39. F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, A.H. Larbi, Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice. Microst. 122, 57–73 (2018)

    Article  ADS  Google Scholar 

  40. F. Bouzid, F. Pezzimenti, L. Dehimi, F.G. Della Corte, M. Hadjab, A.H. Larbi, Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J. Electron. Mater. 48, 4107 (2019)

    Article  ADS  Google Scholar 

  41. F. Bouzid, N. Benaziez, Modeling of InGaN/GaAs photovoltaic tandem with GaAs/AlAs Bragg mirror rear surface reflector. Int. J. Renew. Energy Res. 4, 759 (2014)

    Google Scholar 

  42. F. Bouzid, Prediction of the conversion efficiency of a GaSb thermophotovoltaic converter heated by radioisotope source. Int. J. Renew. Energy Res. 3, 717 (2013)

    Google Scholar 

  43. K Xu. Silicon light-emitting device in standard CMOS technology. in Proc. Optoelectron. Device Integr., Wuhan, China, Jun. 2015, https://doi.org/10.1364/OEDI.2015.OT1C.3.

  44. J.W. Steeds, G.A. Evans, L.R. Danks, S. Furkert, W. Voegeli, M.M. Ismail, F. Carosella, Transmission electron microscope radiation damage of 4H and 6H-SiC studied by photoluminescence spectroscopy. Diam. Relat. Mater. 11, 1923–1945 (2002)

    Article  ADS  Google Scholar 

  45. S. Rahastama, A. Waris, S. Viridi, F. Iskandar, Optimization of surface passivation parameters in [147Pm]-Si planar p-n junction betavoltaic based on analytical 1-D minority carrier diffusion equation approaches. Appl. Radiat. Isot. 151, 226–234 (2019)

    Article  Google Scholar 

  46. L. Yunpeng, G. Xiao, J. Zhangang, T. Xiaobin, Temperature dependence of 63Ni–Si betavoltaic microbattery. Appl. Radiat. Isot. 135, 47–56 (2018)

    Article  Google Scholar 

  47. Y. Liu, X. Tang, Z. Xu, L. Hong, H. Wang, M. Liu, D. Chen, Influences of planar source thickness on betavoltaics with different semiconductors. J. Radioanal. Nucl. Chem. 304, 517–525 (2015). https://doi.org/10.1007/s10967-014-3879-2

    Article  Google Scholar 

  48. K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, phosphors, and voltaics for radioisotope microbatteries, 1st edn. (CRC Press, New York, 2002)

    Book  Google Scholar 

  49. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Interscience, New York, 2006)

    Book  Google Scholar 

  50. Y. Goldberg, M.E. Levinshtein, S.L. Rumyantsev, in Properties of advanced semiconductor materials GaN, AlN, SiC, BN, SiC, SiGe. ed. by M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (Wiley, New York, 2001), pp. 93–148

    Google Scholar 

  51. T. Kimoto, J.A. Cooper, Appendix C: Major Physical Properties of Common SiC Polytypes," in Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, IEEE, 2014, pp. 521–524, https://doi.org/10.1002/9781118313534.app3.

  52. W.J. Choyke, L. Patrick, Luminescence of Donor-Acceptor Pairs in Cubic SiC. Phys. Rev. B 2, 4959 (1970)

    Article  ADS  Google Scholar 

  53. V. Bormashov, S. Troschiev, A. Volkov, S. Tarelkin, E. Korostylev, A. Golovanov, M. Kuznetsov, D. Teteruk, N. Kornilov, S. Terentiev, S. Buga, V. Blank, Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status Solidi A 212(11), 2539–2547 (2015). https://doi.org/10.1002/pssa.201532214

    Article  ADS  Google Scholar 

  54. T.R. Alam, M.A. Pierson, Principles of betavoltaic battery design. J. Energy 3, 11–41 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouzid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, F., Saeed, M.A., Carotenuto, R. et al. Design considerations on 4H-SiC-based p–n junction betavoltaic cells. Appl. Phys. A 128, 234 (2022). https://doi.org/10.1007/s00339-022-05374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05374-7

Keywords

Navigation