Skip to main content
Log in

Novel facile and eco-friendly synthesis of magnetite nanoparticles using iron ferrous chloride for enhancing biomedical applications: effect of Gum Arabic coating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Synthesis of magnetite (Fe3O4) nanoparticles (NPs) with high purity, stability, and small sizes for biomedical applications is in high demand. The research on Fe3O4 NPs has been rapidly expanding and holds considerable promise for advancing new technologies and enhancing existing ones. Herein, Fe3O4 was synthesized from iron ferrous chloride (II) and sodium hydroxide (NaOH) on air, and then coated with gum Arabic (GA) in a single step. The characterizations were investigated using UV–Vis absorption, ultra-high-resolution scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Compared to bare Fe3O4, GA-coated magnetite nanoparticles (GA-Fe3O4) showed a uniform cubic morphology with a mean size of 8.61 ± 1.31 nm. Stability studies were performed via dynamic light scattering (DLS) technique, zeta (ζ) potential, and observing the precipitation of NPs over 5 weeks. GA-Fe3O4 showed higher stability of -34.5 mV compared to -23.1 mV for bare Fe3O4. Further, GA-Fe3O4 NPs demonstrate interesting magnetic properties that can be efficiently separated from the reaction medium with the aid of an external magnet. The magnetic properties of GA-Fe3O4 were confirmed through VSM analysis, revealing a significantly high saturation magnetism of approximately 226 emu/g. GA-Fe3O4 NPs are promising magnetic NPS that can offer several benefits in biomedical applications, such as increased biocompatibility, improved stability, and enhanced functionality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the outcomes of this research are available within the article.

References

  1. O.S. Obisesan, T.O. Ajiboye, S.D. Mhlanga, H.T. Mufhandu, Colloids Surfaces B Biointerfaces 227, 113342 (2023)

    PubMed  Google Scholar 

  2. C. Fang, M. Zhang, J. Mater. Chem. 19, 6258 (2009)

    PubMed  PubMed Central  Google Scholar 

  3. G. Ortega and E. Reguera, in Mater. Biomed. Eng. (Elsevier, 2019), pp. 397–434.

  4. D. D. Stueber, J. Villanova, I. Aponte, Z. Xiao, and V. L. Colvin, Pharmaceutics 13, (2021).

  5. F. Assa, H. Jafarizadeh-Malmiri, H. Ajamein, N. Anarjan, H. Vaghari, Z. Sayyar, A. Berenjian, Nano Res. 9, 2203 (2016)

    Google Scholar 

  6. E. Mzwd, N.M. Ahmed, N. Suradi, S.K. Alsaee, A.S. Altowyan, M.A. Almessiere, A.F. Omar, Sci. Rep. 12, 1 (2022)

    Google Scholar 

  7. Z. Ca, O. Fe, S. Tiwari, G. Lal, H. Bhoi, K. Punia, S. Singh, S. Kumar, J. Magn. Magn. Mater. 570, 170466 (2023)

    Google Scholar 

  8. A. Aseri, S.K. Garg, A. Nayak, S.K. Trivedi, J. Ahsan, Int. J. Pharm. Sci. Rev. Res. 31, 119 (2015)

    Google Scholar 

  9. V. A. J. Silva, P. L. Andrade, M. P. C. Silva, A. D. Bustamante, L. De Los Santos Valladares, and J. Albino Aguiar, J. Magn. Magn. Mater. 343, 138 (2013).

  10. R. Gieré, Proc. Natl. Acad. Sci. U. S. A. 113, 11986 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  11. S.K. Alsaee, N.M. Ahmed, E. Mzwd, A.F. Omar, A.I. Aljameel, N. Afzal, I.A. Razak, S. Arshad, Appl. Phys. B Lasers Opt. 128, 1 (2022)

    ADS  Google Scholar 

  12. Y.P. Yew, K. Shameli, M. Miyake, N.B.B. AhmadKhairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Arab. J. Chem. 13, 2287 (2020)

    Google Scholar 

  13. S. Moraes Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Chem. Commun.Commun. 52, 7528 (2016)

    Google Scholar 

  14. D.A. Alromi, S.Y. Madani, A. Seifalian, Polymers (Basel). 13, 1 (2021)

    Google Scholar 

  15. H. Fatima, D.W. Lee, H.J. Yun, K.S. Kim, RSC Adv. 8, 22917 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  16. G. Zang, Z. Zhang, W. Yu, D. Wang, D. Li, Front. Mater. 9, 1 (2022)

    ADS  Google Scholar 

  17. A. Miri, H. Najafzadeh, M. Darroudi, M.J. Miri, M.A.J. Kouhbanani, M. Sarani, ChemistryOpen 10, 327 (2021)

    PubMed  PubMed Central  Google Scholar 

  18. A.M. Mazrouaa, M.G. Mohamed, M. Fekry, Egypt. J. Pet. 28, 165 (2019)

    Google Scholar 

  19. N.D. Thorat, S.V. Otari, R.M. Patil, R.A. Bohara, H.M. Yadav, V.B. Koli, A.K. Chaurasia, R.S. Ningthoujam, Dalt. Trans. 43, 17343 (2014)

    Google Scholar 

  20. N.S. Elbialy, M.M. Fathy, W.M. Khalil, Phys. Medica 30, 843 (2014)

    Google Scholar 

  21. H. Zheng, J. Schenk, D. Spreitzer, T. Wolfinger, and O. Daghagheleh, Steel Res. Int. 92, (2021).

  22. C. Boyer, M.R. Whittaker, V. Bulmus, J. Liu, T.P. Davis, NPG Asia Mater. 2, 23 (2010)

    Google Scholar 

  23. E. Tombácz, R. Turcu, V. Socoliuc, L. Vékás, Biochem. Biophys. Res. Commun. 468, 442 (2015)

    PubMed  Google Scholar 

  24. N.A. Almuslet, E.A. Hassan, A.S.A.E.M. Al-Sherbini, M.G.A. Muhgoub, J. Phys. Sci. 23, 43 (2012)

    Google Scholar 

  25. L. Zhang, F. Yu, A.J. Cole, B. Chertok, A.E. David, J. Wang, V.C. Yang, AAPS J. 11, 693 (2009)

    PubMed  PubMed Central  Google Scholar 

  26. M.S.A. Darwish, L.M. Al-Harbi, A. Bakry, J. Therm. Anal. Calorim. 147, 11921 (2022)

    Google Scholar 

  27. Y. Li, N. Wang, X. Huang, F. Li, T.P. Davis, R. Qiao, D. Ling, A.C.S. Appl, Bio Mater. 3, 121 (2020)

    Google Scholar 

  28. S.V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N.V. Sviridenkova, A.G. Savchenko, N.L. Klyachko, Y.I. Golovin, N.V. Chufarova, E.K. Beloglazkina, A.G. Majouga, J. Magn. Magn. Mater. 394, 173 (2015)

    ADS  Google Scholar 

  29. A. Abuarra, R. Hashim, S. Bauk, S. Kandaiya, E.T. Tousi, Mater. Des. 60, 108 (2014)

    Google Scholar 

  30. E. Mzwd, S. K. Alsaee, N. Suradi, A. A. Aziz, and S. Arshad, Exploring the nonlinear optical properties of gold nanoparticles colloids capped with gum arabic: a study utlizing continuous wave laser and z-scan technique, Optical Materials, 148 (2024).

  31. V. Vatanpour, S. Paziresh, A.H. Behroozi, H. Karimi, M.S. Esmaeili, S. Parvaz, S. Imanian Ghazanlou, A. Maleki, Chemosphere 328, 138586 (2023)

    PubMed  Google Scholar 

  32. H. Zamani, B. Rastegari, M. Varamini, J. Drug Deliv. Sci. Technol. 54, 101278 (2019)

    Google Scholar 

  33. A. Kebede, A.V. Gholap, A.K. Rai, World J. Nano Sci. Eng. 01, 89 (2011)

    ADS  Google Scholar 

  34. M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc.. Acta Part A Mol. Biomol. Spectrosc. 135, 536 (2015)

    ADS  Google Scholar 

  35. A. Bhardwaj, N. Jain, K. Parekh, Cancer Nanotechnol. 12, 1 (2021)

    Google Scholar 

  36. E. Alzahrani, Int. J. Innov. Res. Sci. Eng. Technol. 03, 15118 (2014)

    Google Scholar 

  37. A.M. Chockalingam, H. Kumar, R. Ramesh, R. Chittor, J. Nanobiotechnology 2010(8), 1 (2010)

    Google Scholar 

  38. N. Mallick, M. Anwar, M. Asfer, S.H. Mehdi, M.M.A. Rizvi, A.K. Panda, S. Talegaonkar, F.J. Ahmad, Carbohydr. Polym. 151, 546 (2016)

    PubMed  Google Scholar 

  39. M.N. Darminto, F.A. Cholishoh, M.A. Perdana, M.Y. Baqiya, Cahyono, and Triwikantoro. AIP Conf. Proc. 1415, 234 (2011)

    ADS  Google Scholar 

  40. H. Setyawan, W. Widiyastuti, KONA Powder Part. J. 36, 145 (2019)

    Google Scholar 

  41. H. Zhang, G.A. Waychunas, J.F. Banfield, J. Phys. Chem. B 119, 10630 (2015)

    PubMed  Google Scholar 

  42. M.F. Horst, D.F. Coral, M.B. Fernández van Raap, M. Alvarez, V. Lassalle, Mater. Sci. Eng. C 74, 443 (2017)

    Google Scholar 

  43. M.O. Rigo, J. Kleinclauss, Philos. Mag. B 42, 393 (1980)

    ADS  Google Scholar 

  44. S. K. Alsaee, E. Mzwd, M. A. A. Bakar, S. A. M. Samsuri, N. M. Ahmed, M. Abdullah, I. A. Razak, and S. Arshad, Optik (Stuttg). 170384 (2022).

  45. S. K. Alsaee, M. A. Abu Bakar, D. A. Zainuri, A. H. Anizaim, M. F. Zaini, M. M. Rosli, M. Abdullah, S. Arshad, and I. Abdul Razak, Opt. Mater. (Amst). 128, 112314 (2022).

  46. Z.I. Glavcheva, D.Y. Yancheva, Y.K. Kancheva, E.A. Velcheva, B.A. Stamboliyska, Bulg. Chem. Commun. 46, 164 (2014)

    Google Scholar 

  47. A.I. El-Batal, M. Abd Elkodous, G.S. El-Sayyad, N.E. Al-Hazmi, M. Gobara, A. Baraka, Int. J. Biol. Macromol. J. Biol. Macromol. 165, 169 (2020)

    Google Scholar 

  48. S. Y. Anna and L. Anna, (2014).

  49. W. F. K. Wan Nor, S. K. C. Soh, A. A. A. R. Azmi, M. S. M. Yusof, and M. Shamsuddin, Malaysian J. Anal. Sci. 22, 768 (2018).

  50. R. Muneer, M.R. Hashmet, P. Pourafshary, M. Shakeel, Nanomaterials 13, 1 (2023)

    Google Scholar 

  51. A.C.A. Roque, A. Bicho, I.L. Batalha, A.S. Cardoso, A. Hussain, J. Biotechnol. 144, 313 (2009)

    PubMed  Google Scholar 

  52. P. Chawla, A. Najda, A. Bains, R. Nurzyńska-Wierdak, R. Kaushik, M.M. Tosif, Nanomaterials 11, 1308 (2021)

    PubMed  PubMed Central  Google Scholar 

  53. J. Li, X. Xu, Z. Chen, T. Wang, Z. Lu, W. Hu, L. Wang, Carbohydr. Polym. 200, 416 (2018)

    PubMed  Google Scholar 

  54. S. E. Sakiyama-Elbert, Biomater. Sci. An Introd. to Mater. Med. 485 (2020).

  55. H.J. Mustafa, T.M. Al-Saadi, Iraqi J. Sci. 62, 889 (2021)

    Google Scholar 

  56. P.J. Lu, W.E. Fu, S.C. Huang, C.Y. Lin, M.L. Ho, Y.P. Chen, H.F. Cheng, J. Food Drug Anal. 26, 628 (2018)

    PubMed  Google Scholar 

  57. E. V. Uspenskaya, A. V. Syroeshkin, T. V. Pleteneva, I. V. Kazimova, T. V. Grebennikova, I. T. Fedyakina, V. V. Lebedeva, O. E. Latyshev, O. V. Eliseeva, V. F. Larichev, T. M. Garaev, T. V. Maximova, M. A. Morozova, and P. M. Hanh, Pharmaceutics 13, (2021).

  58. F.C. Setzer, K.J. Shi, Z. Zhang, H. Yan, H. Yoon, M. Mupparapu, J. Li, J. Endod. 46, 987 (2020)

    PubMed  Google Scholar 

  59. H. Hinterwirth, S.K. Wiedmer, M. Moilanen, A. Lehner, G. Allmaier, T. Waitz, W. Lindner, M. Lämmerhofer, J. Sep. Sci. 36, 2952 (2013)

    PubMed  Google Scholar 

  60. A. Cardoso, O. Ana, and C. Afonso, In vitro studies of gum arabic-coated magnetic nanoparticles with mammalian cell cultures, 2008.

  61. Wahajuddin and S. Arora, Int. J. Nanomedicine 7, 3445 (2012).

  62. W.M. Daoush, J. Nanomedicine Res. 5, 12 (2017)

    Google Scholar 

  63. M.E. Reyes-Melo, J.G. Puente-Córdova, B. López-Walle, A. Torres-Castro, A.F. García-Loera, Ing. Investig. Tecnol. 19, 113 (2018)

    Google Scholar 

  64. M. R. Ghazanfari, M. Kashefi, S. F. Shams, and M. R. Jaafari, Biochem. Res. Int. 2016, (2016).

  65. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266 (2013)

    PubMed  PubMed Central  Google Scholar 

  66. T. Arun, K. Prakash, R. Kuppusamy, R.J. Joseyphus, J. Phys. Chem. Solids 74, 1761 (2013)

    ADS  Google Scholar 

  67. L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin, Magnetochemistry 6, 1 (2020)

    Google Scholar 

  68. A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee, Tuning the magnetic properties of nanoparticles (2013).

  69. P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Langmuir 15, 1945 (1999)

    Google Scholar 

  70. Y. Liu, T. Cui, Y. Li, Y. Zhao, Y. Ye, W. Wu, G. Tong, Mater. Chem. Phys. 173, 152 (2016)

    ADS  Google Scholar 

  71. S. Upadhyay, K. Parekh, B. Pandey, J. Alloys Compd. 678, 478 (2016)

    Google Scholar 

  72. J. Drbohlavova, R. Hrdy, V. Adam, R. Kizek, O. Schneeweiss, J. Hubalek, Sensors 9, 2352 (2009)

    ADS  PubMed  PubMed Central  Google Scholar 

  73. M. A. Vergés, R. Costo, A. G. Roca, J. F. Marco, G. F. Goya, C. J. Serna, and M. P. Morales, J. Phys. D. Appl. Phys. 41, (2008).

  74. G. Tong, W. Wu, R. Qiao, J. Yuan, J. Guan, H. Qian, J. Mater. Res. 26, 1639 (2011)

    ADS  Google Scholar 

  75. G. Zhen, B.W. Muir, B.A. Moffat, P. Harbour, K.S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, P.G. Hartley, J. Phys. Chem. C 115, 327 (2011)

    Google Scholar 

  76. Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer, J. Nanoparticle Res. 8, 489 (2006)

    ADS  Google Scholar 

  77. D. Caruntu, G. Caruntu, C.J. O’Connor, J. Phys. D Appl. Phys. 40, 5801 (2007)

    ADS  Google Scholar 

  78. P. Guardia, A. Labarta, X. Batlle, J. Phys. Chem. C 115, 390 (2011)

    Google Scholar 

  79. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernández-García, A. Guedes, P.B. Tavares, J.M. Grenéche, J.P. Araújo, C. Freire, Chem. Mater. 24, 1496 (2012)

    Google Scholar 

  80. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chemie Int. Ed. 44, 2782 (2005)

    Google Scholar 

  81. J. Lee, J. Jang, J. Choi, S. H. Moon, and S. Noh, 1 (2011).

  82. K. Mylkie, P. Nowak, P. Rybczynski, M. Ziegler-Borowska, Materials (Basel). 14, 1 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the School of Physics at USM for providing the appropriate research facilities. The authors also sincerely thank Universiti Sains Malaysia, for the financial support of this research through a grant under code (RUI 1001.PFIZIK.8011111).

Funding

This study was funded by Universiti Sains Malaysia for the Research University Grant (RUI 1001.PFIZIK.8011111).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by [Elham Mzwd]. All authors commented on previous versions of the manuscript. Also, all authors read and approved the final manuscript. EM: conceptualization, data collection, validation, formal analysis, data curation, writing–original draft. SKA: formal analysis, and writing—review & editing. NS: validation, resources, supervision, review and editing, project administration, and funding acquisition. AA: review & editing. AAA: resources, supervision, and review,

Corresponding author

Correspondence to Nursakinah Suardi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mzwd, E., Alsaee, S.K., Suardi, N. et al. Novel facile and eco-friendly synthesis of magnetite nanoparticles using iron ferrous chloride for enhancing biomedical applications: effect of Gum Arabic coating. Appl. Phys. A 130, 195 (2024). https://doi.org/10.1007/s00339-024-07362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07362-5

Keywords

Navigation