Skip to main content
Log in

Binder-free hybrid materials based on carbon fibers modified with metal oxides as anode materials for lithium-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work binder-free hybrid materials based on carbon fibers modified with metal oxides (HMs) were successfully synthesized via a non-stationary electrolysis method as perspective anode materials for lithium-ion batteries. In attempt to improve the cycling performance and storage performance, the HMs were doped with vanadium and tungsten oxides during surface preparation stage of initial carbon fabric (ICF). It is shown that, in the study of electrochemical properties of synthesized HM, both carbon fabric and oxide layer act as anode in the charge–discharge process. The calculated specific capacity of the HMs was 185 mAh/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available on request.

References

  1. F. Xue, Y. Li, C. Liu, Z. Zhang, J. Lin, J. Hao, Q. Li, Engineering flexible carbon nanofiber concatenated MOF-derived hollow octahedral CoFe2O4 as an anode material for enhanced lithium storage. Inorg. Chem. Front. 8, 3363–3370 (2021). https://doi.org/10.1039/d1qi00414j

    Article  CAS  Google Scholar 

  2. J. Kim, W. Jang, J.H. Kim, C.-M. Yang, Synthesis of graphene quantum dots-coated hierarchical CuO microspheres composite for use as binder-free anode for lithium-ion batteries. Compos. Part B. 222, 109083 (2021). https://doi.org/10.1016/j.compositesb.2021.109083

    Article  CAS  Google Scholar 

  3. A.U. Ammar, F. Bakan-Misirlioglu, M.H. Aleinawi, G. Franzo, G.G. Condorelli, F. NurTuzluca Yesilbag, Y.O. Yesilbag, S. Mirabella, E. Erdem, All-in-one supercapacitors with high performance enabled by Mn/Cu doped ZnO and MXene. Mater. Res. Bull. 165, 112334 (2023). https://doi.org/10.1016/j.materresbull.2023.112334

    Article  CAS  Google Scholar 

  4. M. Berde-Akturk, M. Toufani, A. Tufani, E. Erdem, ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices. Nanoscale 14, 3269–3278 (2022)

    Article  Google Scholar 

  5. J. Jyoti, B.P. Singh, S.K. Tripathi, Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. J. Energy Storage. 43, 103112 (2021). https://doi.org/10.1016/j.est.2021.103112

    Article  Google Scholar 

  6. H. Zhang, H. Zhao, M.A. Khan, W. Zou, J. Xu, L. Zhangab, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A. 6, 20564–20620 (2018). https://doi.org/10.1039/C8TA05336G

    Article  CAS  Google Scholar 

  7. R. Cong, J.-Y. Choi, J.-B. Song, M. Jo, H. Lee, C.-S. Lee, Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Sci. Rep. 11, 1283 (2021). https://doi.org/10.1038/s41598-020-79205-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Y. Shi, X. Zhou, G. Yu, Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017). https://doi.org/10.1021/acs.accounts.7b00402

    Article  CAS  PubMed  Google Scholar 

  9. R. Wang, L. Feng, W. Yang, Y. Zhang, Y. Zhang, W. Bai, B. Liu, W. Zhang, Y. Chuan, Z. Zheng, H. Guan, Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Res. Lett. 12, 575 (2017). https://doi.org/10.1186/s11671-017-2348-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. A. Oishi, R. Tatara, E. Togo, H. Inoue, S. Yasuno, S. Komaba, Sulfated alginate as an effective polymer binder for high-voltage LiNi0.5Mn1.5O4 electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 51808–51818 (2022). https://doi.org/10.1021/acsami.2c11695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Dong, H. Zhang, Y. Ma, J. Zhang, X. Du, C. Lu, X. Shangguan, J. Li, M. Zhang, J. Yang, X. Zhou, G. Cui, A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes. J. Mater. Chem. A. 7, 24594 (2019). https://doi.org/10.1039/C9TA08299A

    Article  CAS  Google Scholar 

  12. L.-F. Zhao, Z. Hu, W.-H. Lai, Y. Tao, J. Peng, Z.-C. Miao, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 1, 2002704 (2020). https://doi.org/10.1002/aenm.202002704

    Article  CAS  Google Scholar 

  13. M.A. Rahman, M.M. Rahman, G. Song, A review on binder-free NiO-Ni foam as anode of high performance lithium-ion batteries. Energy Storage 3, 278 (2022). https://doi.org/10.1002/est2.278

    Article  CAS  Google Scholar 

  14. B. Joshi, E. Samuel, Y. Kim, A.L. Yarin, M.T. Swihart, S.S. Yoon, Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. Chem. Eng. J. 430, 132876 (2022). https://doi.org/10.1016/j.cej.2021.132876

    Article  CAS  Google Scholar 

  15. J. Zha, Z. Lei, K. Sun, S. Zhu, MXene enabled binder-free FeOF cathode with high volumetric and gravimetric capacities for flexible lithium ion batteries. Electrochim. Acta 423, 140595 (2022). https://doi.org/10.1016/j.electacta.2022.140595

    Article  CAS  Google Scholar 

  16. V.C. Ho, S.H. Oh, J. Mun, A binder-free bivalent manganese oxide cathode elective structure with high activity in aqueous zinc ion batteries. Int. J. Energy Res. 7, 9720–9732 (2022). https://doi.org/10.1002/er.7841

    Article  CAS  Google Scholar 

  17. C.-J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo, Z.J. Xu, D.-S. Li, S. Zhang, Q. Zhang, Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 9, 2457–2463 (2020). https://doi.org/10.1002/cssc.201903007

    Article  CAS  Google Scholar 

  18. Y. Qi, K. Qin, Z. Jian, X. Yang, W. Jin, Y. Tan, Y. Zou, W. Chen, Ag-functionalized exfoliated V2O5 nanosheets: a flexible and binder-free cathode for lithium-ion batteries. J. Mater. Sci. 54, 12713–12722 (2019). https://doi.org/10.1007/s10853-019-03806-z

    Article  CAS  ADS  Google Scholar 

  19. H. Lyu, X.-G. Sun, S. Dai, Organic cathode materials for lithium-ion batteries: past, present, and future. Adv. Energy Sustain. Res. 1, 2000044 (2021). https://doi.org/10.1002/aesr.202000044

    Article  CAS  Google Scholar 

  20. C. Luo, W. Lu, Y. Yu Li, W. Feng, Y. Feng, X.Y. Zhao, Preparation of C/Ni-NiO composite nanofibers for anode materials in lithium-ion batteries. Appl. Phys. A 113, 683–692 (2013). https://doi.org/10.1007/s00339-013-7700-9

    Article  CAS  ADS  Google Scholar 

  21. J. Li, M. Jing, C. Han, S. Yao, H. Zhai, L. Chen, X. Shen, K. Xiao, A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery. Appl. Phys. A 124, 332 (2018). https://doi.org/10.1007/s00339-018-1750-y

    Article  CAS  ADS  Google Scholar 

  22. E. Muchuweni, E.T. Mombeshora, C.M. Muiva, T.S. Sathiaraj, Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials. J Energy Storage 73(Part B), 109013 (2023). https://doi.org/10.1016/j.est.2023.109013

    Article  Google Scholar 

  23. U. Ray, D. Das, A. Mitra, S.B. Majumder, S. Das, Electrochemical performance of electrophoretically deposited zinc antimony oxide-carbon black anode for lithium-ion batteries. Mater. Lett. 355, P135567 (2024). https://doi.org/10.1016/j.matlet.2023.135567

    Article  CAS  Google Scholar 

  24. K. Yan, S. Chen, J. Zhai, Y. Zhao, Z. Deng, G. Wang, In situ growth of layered double hydroxide-derived NiCoO2 nanorod arrays on carbon fiber cloth for the application on high-performance lithium-ion batteries. Energy Technol. 7, 2000219 (2020). https://doi.org/10.1002/ente.202000219

    Article  CAS  Google Scholar 

  25. H. Yanan, Z. Ze, W. Minji, T. Chuanbao, H. Mouzhi, C. Jianxin, Y. Zhenyu, Y. Ji, Co0.85Se nanosheet anchored on carbon fibers as anode materials for high-performance flexible Li-ion batteries. Chem. Phys. Lett. 783, 139072 (2021). https://doi.org/10.1016/j.cplett.2021.139072

    Article  CAS  Google Scholar 

  26. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 8, 1502175 (2016). https://doi.org/10.1002/aenm.201502175

    Article  CAS  Google Scholar 

  27. K. Ullah, N. Shah, R. Wadood, B.M. Khan, W.C. Oh, Recent trends in graphene based transition metal oxides as anode materials for rechargeable lithium-ion batteries. Nano Trends. 1, 100004 (2023). https://doi.org/10.1016/j.nwnano.2023.100004

    Article  Google Scholar 

  28. L. Fagiolari, D. Versaci, F.D. Berardino, J. Amici, C. Francia, S. Bodoardo, F. Bella, An exploratory study of MoS2 as anode material for potassium batteries. Batteries 8, 242 (2022). https://doi.org/10.3390/batteries8110242

    Article  CAS  Google Scholar 

  29. H. Wu, S. Zhou, C.-H. Tseng, M. Qin, A. Shiue, A. Chu, Z. Cao, B. Jia, X. Qu, One-pot solution combustion synthesis of crystalline and amorphous molybdenum trioxide as anode for lithium-ion battery. J. Am. Ceram. Soc. 104, 1102–1109 (2021). https://doi.org/10.1111/jace.17499

    Article  CAS  Google Scholar 

  30. Z. Rong, C. Fang, Z. Zhang, W. Miao, X. Li, J. Liang, W. Yang, Y. Wang, X. Guo, Y. Jung, X. Dong, One-step synthesis of carbon-coated monocrystal molybdenum oxides nanocomposite as high-capacity anode materials for lithiumion batteries. J. Materiomics. 7, 498–507 (2021). https://doi.org/10.1016/j.jmat.2020.11.013

    Article  Google Scholar 

  31. G. Liu, T. Zhang, X. Huang, Y. Wei, D. Guo, N. Wu, X. Liu, Superior lithium storage performance of brain kernel-like WO3 assembled with nanocrystallites via hydrothermal treatment. Chem. Lett. 48, 1112–1115 (2019). https://doi.org/10.1246/cl.190396

    Article  CAS  Google Scholar 

  32. X. Dong, Y. Liu, S. Zhu, Y. Ou, X. Zhang, W. Lan, H. Guo, C. Zhang, Z. Liu, S. Ju, Y. Miao, Y. Zhang, H. Li, Architecting hierarchical WO3 agglomerates assembled with straight and parallel aligned nanoribbons enabling high capacity and robust stability of lithium storage. Front. Chem. (2021). https://doi.org/10.3389/fchem.2021.834418

    Article  PubMed  PubMed Central  Google Scholar 

  33. Y. Xiao, M. Jiang, M. Cao, Developing WO3 as high-performance anode material for lithium-ion batteries. Mater. Lett. 285, 129129 (2021). https://doi.org/10.1016/j.matlet.2020.129129

    Article  CAS  Google Scholar 

  34. S.K. Park, W.M. Dose, B.D. Boruah, M.D. Volder, In situ and operando analyses of reaction mechanisms in vanadium oxides for Li-, Na-, Zn-, and Mg-ions batteries. Adv. Mater. Technol. 7, 2100799 (2022). https://doi.org/10.1002/admt.202100799

    Article  CAS  Google Scholar 

  35. A. Hroub, M.H. Aleinawi, M. Stefan, M. Mihet, A. Ciorita, F. Bakan-Misirlioglu, E. Erdem, A.M. Rostas, Vanadium-doped magnesium oxide nanoparticles as electrodes in supercapacitor devices. J. Alloys Compd. 958, 170442 (2023). https://doi.org/10.1016/j.jallcom.2023.170442

    Article  CAS  Google Scholar 

  36. S.A. Hevia, J. Orive, F. Guzman, E. Cisternas, F. Dietrich, R. Villarroel, J. Lisoni, High performance of V2O5 thin film electrodes for lithium-ion intercalation. Appl. Surface Sci. 576, 151710 (2022). https://doi.org/10.1016/j.apsusc.2021.151710

    Article  CAS  Google Scholar 

  37. X. Zhang, X. Sun, X. Li, X. Hu, S. Gai, C. Zheng, Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries. J. Energy Chem. 59, 343–363 (2021). https://doi.org/10.1016/j.jechem.2020.11.022

    Article  CAS  Google Scholar 

  38. D. Narsimulu, G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, Designed lamination of binder-free flexible iron oxide/carbon cloth as high capacity and stable anode material for lithium-ion batteries. Appl. Surface Sci. 497, 145795 (2019). https://doi.org/10.1016/j.apsusc.2019.143795

    Article  CAS  Google Scholar 

  39. S.R. Sahu, V.R. Rikka, P. Haridoss, A. Chatterjee, R. Gopalan, R. Prakash, A novel α-MoO3/single-walled carbon nanohorns composite as high-performance anode material for fast-charging lithium-ion battery. Adv. Energy Mater. 10, 2001627 (2020). https://doi.org/10.1002/aenm.202001627

    Article  CAS  Google Scholar 

  40. C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Fabrication and shell optimization of synergistic TiO2 -MoO3 core-shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 25, 3524–3533 (2015). https://doi.org/10.1002/adfm.201500634

    Article  CAS  Google Scholar 

  41. E. M. Modan, A. G. Plaiasu, Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials, The annals of “Dunarea de Jos” university of galati fascicle ix. Metallurgy and materials science 1, (2020). https://doi.org/10.35219/mms.2020.1.08

  42. P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Delivery Sci. Technol. 53, 101174 (2019). https://doi.org/10.1016/j.jddst.2019.101174

    Article  CAS  Google Scholar 

  43. A.V. Khramenkova, D.N. Ariskina, O.E. Polozhentsev, I.I. Lyatun, D.M. Kuznetsov, E.A. Yatsenko, Hybrid polymer-oxide materials formed by non-stationary electrolysis as catalysts for hydrogen peroxide decomposition. Compos. Interfaces Interfaces 29, 1229–1247 (2022). https://doi.org/10.1080/09276440.2022.2044109

    Article  CAS  ADS  Google Scholar 

  44. A.V. Khramenkova, V.V. Moshchenko, D.N. Izvarina, K.M. Popov, L.G. Bulusheva, A.V. Okotrub, Non-stationary electrochemical synthesis of flexible binder-free hybrid electrode materials for supercapacitors. J. Alloys Compd. 961, 170909 (2023). https://doi.org/10.1016/j.jallcom.2023.170909

    Article  CAS  Google Scholar 

  45. K. Pushnitsa, A. Kosenko, V. Chernyavsky, A. Pavlovskii, P. Novikov, A. Popovich, Copper-coated graphite felt as current collector for li-ion batteries. Coatings 12, 1321 (2022). https://doi.org/10.3390/coatings12091321

    Article  CAS  Google Scholar 

  46. M. Saito, K. Yamaguchi, K. Sekine, T. Takamura, On the improvement of Li charge/discharge cyclability of carbon fibers by making a C/C composite with thermosetting resins. Solid State Ionics 135, 199–207 (2000). https://doi.org/10.1016/S0167-2738(00)00364-7

    Article  CAS  Google Scholar 

  47. A. Mabuchi, K. Tokumitsu, H. Fujimoto, T. Kasuh, Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures. J. Electrochem. Soc. 142, 1041–1046 (1995). https://doi.org/10.1149/1.2044128

    Article  CAS  ADS  Google Scholar 

  48. Z.Y. Huang, Y.F. Yuan, Z.C. Lin, J.J. Lin, S.B. Li, S.Y. Guo, Y.Z. Huang, W.W. Yan, Fluffy ultrathin WO3 nanoneedle clusters in-situ grown in mesoporous hollow carbon nanospheres as advanced anode for lithium-ion batteries. J. Alloys Compd. 969, 172458 (2023). https://doi.org/10.1016/j.jallcom.2023.172458

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scholarship Council of the President of Russia (Grant no. SP-3068.2021.1).

Author information

Authors and Affiliations

Authors

Contributions

AVK—conceptualization, methodology, writing—original draft; VVM—investigation, visualization; PVL—investigation; OAF—investigation; MAE—formal analysis; VAC—investigation, visualization. MYuM—writing–review and editing.

Corresponding author

Correspondence to Anna V. Khramenkova.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Moshchenko, V.V., Laptii, P.V. et al. Binder-free hybrid materials based on carbon fibers modified with metal oxides as anode materials for lithium-ion batteries. Appl. Phys. A 130, 202 (2024). https://doi.org/10.1007/s00339-024-07360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07360-7

Keywords

Navigation