Skip to main content
Log in

Metal-Organic Framework Derived MnO/Carbon Cloth Loaded by MnO Nanoparticles as a High-Performance Self-Supporting Anode for Lithium-Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, carbon cloth with pre-loaded MnO nanoparticles (the composite is denoted as MnO/CC) is synthesized by hydrothermal reaction and sintering. A flake-like Mn-MOF derivative is grown on MnO/CC (the composite is denoted as MOF derivative/MnO/CC) by subsequent solvothermal reaction and sintering. The gap between MnO nanoparticles on the surface of carbon fibers provides space for the growth of Mn-MOF, and the MnO nanoparticles fix the grown Mn-MOF, which achieves the loading of Mn-MOF and its derivative on carbon cloth. As a self-supporting anode for lithium-ion batteries, MOF derivative/MnO/CC delivers a capacity of 1292 mAh g−1, which is much higher than that of MnO/CC. The Mn-MOF derivative further increases the conductivity of the MnO nanoparticles on the surface of carbon fibers, and the MOF derivative with excellent electrochemical performance is applied to the self-supporting anode. These factors lead to the better electrochemical performance of MOF derivative/MnO/CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable Lithium batteries. Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  2. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries. Energy Environ. Sci. 4, 2682 (2011).

    Article  CAS  Google Scholar 

  3. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Li-ion Battery Materials: Present and Future. Mater. Today 18, 252 (2015).

    Article  CAS  Google Scholar 

  4. Y. Tang, H. Zhang, J. Li, G. Hou, H. Cao, L. Wu, G. Zheng, and Q. Wu, Three-Dimensional Ordered Macroporous Cu/Fe3O4 Composite as Binder-Free Anode for Lithium-Ion Batteries. J. Alloys Comp. 719, 203–209 (2017).

    Article  CAS  Google Scholar 

  5. X. He, Y. Hu, Z. Shen, R. Chen, K. Wu, Z. Cheng, X. Zhang, and P. Pan, GeOx Ultra-Dispersed in Microporous Carbon Nanofibers: a Binder-Free Anode for High Performance Lithium-Ion Battery. Electrochim. Acta. 246, 981–989 (2017).

    Article  CAS  Google Scholar 

  6. G. Zhao, Z. Xu, L. Zhang, and K. Sun, Hierarchical porous Co3O4 films with size-adjustable pores as Li ion battery anodes with excellent rate performances. Electrochim. Acta. 114, 251 (2013).

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y. Yan, X. Wang, G. Li, D. Deng, L. Jiang, C. Shu, and C. Wang, Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries. Chem. Eur. J. 20, 6126 (2014).

    Article  CAS  Google Scholar 

  8. H. Su, Y. Xu, S. Feng, Z. Wu, X. Sun, C. Shen, J. Wang, J. Li, L. Huang, and S. Sun, Hierarchical Mn2O3 Hollow Microspheres as Anode Material of Lithium Ion Battery and its Conversion Reaction Mechanism Investigated by XANES. ACS Appl. Mater. Interfaces 7, 8488 (2015).

    Article  CAS  Google Scholar 

  9. J. Song, Y. Li, R. Tong, Y. Yan, Q. Tian, J. Chen, and L. Yang, MnxOy Embedded within CNT Supporting Porous Carbon for Enhanced Lithium Storage. J. Phys. Chem. Solids. 160, 110317 (2022).

    Article  CAS  Google Scholar 

  10. J. Wang, D. Jin, R. Zhou, X. Li, X. Liu, C. Shen, K. Xie, B. Li, F. Kang, and B. Wei, Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-ion Batteries. ACS Nano 10, 6227 (2016).

    Article  CAS  Google Scholar 

  11. W. Zhang, J. Sheng, J. Zhang, T. He, L. Hu, R. Wang, L.Q. Mai, and S.C. Mu, Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. J. Mater. Chem. 4, 16936 (2016).

    Article  CAS  Google Scholar 

  12. K. Cao, Y. Jia, S. Wang, K. Huang, and H. Liu, Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage. J. Alloys Compd. 854, 157179 (2021).

    Article  CAS  Google Scholar 

  13. K. Liu, F. Zou, Y. Sun, Z. Yu, X. Liu, L. Zhou, Y. Xia, B.D. Vogt, and Y. Zhu, Self-assembled Mn3O4/C nanospheres as high-performance anode materials for lithium ion batteries. J. Power Sources. 395, 92–97 (2018).

    Article  CAS  Google Scholar 

  14. W. Xia, A. Mahmood, R. Zou, and Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837 (2015).

    Article  CAS  Google Scholar 

  15. G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, and K. Sun, A Self-Supported Metal-Organic Framework Derived Co3O4 Film Prepared by an in-situ Electrochemically Assistant Process as Li ion Battery Anodes. J. Power Sources. 389, 8–12 (2018).

    Article  CAS  Google Scholar 

  16. G. Zhao, L. Tang, L. Zhang, X. Chen, Y. Mao, and K. Sun, Well-Developed Capacitive-Capacity of Metal-Organic Framework Derived Co3O4 Films in Li ion Battery Anodes. J. Alloys Compd. 746, 277 (2018).

    Article  CAS  Google Scholar 

  17. D. Sun, Y. Tang, D. Ye, J. Yan, H. Zhou, and H. Wang, Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li-ion Batteries. ACS Appl. Mater. Interfaces. 9, 5254 (2017).

    Article  CAS  Google Scholar 

  18. F. Guo, H. Chen, Y. Chen, W. Zhang, Z. Li, Y. Xu, Y. Wang, J. Zhou, and H. Zhang, Dual-Metal-Organic Frameworks Derived Manganese and Zinc Oxides Nanohybrids as High Performance Anodes for Lithium-Ion Batteries. J. Alloys Compd. 852, 156814 (2021).

    Article  CAS  Google Scholar 

  19. T. Huang, Z. Lou, Y. Lu, R. Li, Y. Jiang, G. Shen, and D. Chen, Metal-Organic-Framework-Derived MCo2O4 (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage applications. ChemElectroChem 6, 5836 (2019).

    Article  CAS  Google Scholar 

  20. Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He, X. Zhang, Y. Zhang, and K. Wu, Sandwich Structure of Graphene-Protected Silicon/Carbon Nanofibers for Lithium-ion Battery Anodes. Electrochim. Acta. 210, 53 (2016).

    Article  CAS  Google Scholar 

  21. T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, and H. Zhan, Metal-Organic Framework Derived Porous Ternary ZnCo2O4 Nanoplate Arrays Grown on Carbon Cloth as Binder-Free Electrodes for Lithium-Ion Batteries. Chem. Eng. J. 354, 454 (2018).

    Article  CAS  Google Scholar 

  22. S.H. Ji, N.R. Chodankar, W.S. Jang, and D.H. Kim, High Mass Loading of h-WO3 and a-MnO2 on Flexible Carbon Cloth for High-Energy Aqueous Asymmetric Supercapacitor. Electrochim. Acta. 299, 245 (2019).

    Article  CAS  Google Scholar 

  23. Z. Xu, S. Sun, W. Cui, J. Lv, Y. Geng, H. Li, and J. Deng, Interconnected Network of Ultrafine MnO2 Nanowires on Carbon Cloth with Weed-Like Morphology for High-Performance Supercapacitor Electrodes. Electrochim. Acta. 268, 340 (2018).

    Article  CAS  Google Scholar 

  24. F. Tang, J. Gao, Q. Ruan, X. Wu, X. Wu, T. Zhang, Z. Liu, Y. Xiang, Z. He, and X. Wu, Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc Ion Batteries. Electrochim. Acta. 353, 136570 (2020).

    Article  CAS  Google Scholar 

  25. K. Zeng, X. Li, Z. Wang, H. Guo, J. Wang, T. Li, W. Pan, and K. Shih, Cave-Embedded Porous Mn2O3 Hollow Microsphere as Anode Material for Lithium Ion Batteries. Electrochim. Acta. 247, 795 (2017).

    Article  CAS  Google Scholar 

  26. Y. Zhang, J. Li, Z. Wu, L. Huang, and S. Sun, Synthesis of Hierarchical Spindle-Like Mn2O3 for Lithium Ion Batteries with Enhanced Lithium Storage Properties. J. Alloys Compd. 721, 229 (2017).

    Article  CAS  Google Scholar 

  27. J. Yoon, W. Choi, T. Kim, H. Kim, Y. Choi, J. Kim, and W. Yoon, Reaction Mechanism and Additional Lithium Storage of Mesoporous MnO2 Anode in Li Batteries. J. Energy Chem. 53, 276 (2021).

    Article  Google Scholar 

  28. Y. Qin, Z. Jiang, L. Guo, J. Huang, and Z. Jiang, Controlled Thermal Oxidation Derived Mn3O4 Encapsulated in Nitrogen Doped Carbon as an Anode for Lithium/Sodium Ion Batteries with Enhanced Performance. Chem. Eng. J. 406, 126894 (2021).

    Article  CAS  Google Scholar 

  29. C. Yue, D. Qiu, C. Kang, M. Li, C. Qiu, L. Xian, F. Wang, and R. Yang, Multidimensional Dual-Carbon Skeleton Network Confined MnOx Anode Boosting High-Performance Lithium-Ion Hybrid Capacitors. ACS Appl. Energy Mater. 4, 11268 (2021).

    Article  CAS  Google Scholar 

  30. Z. Zhou, C. Ding, W. Peng, Y. Li, F. Zhang, and X. Fan, One-Step Fabrication of Two-Dimensional Hierarchical Mn2O3@Graphene Composite as High-Performance Anode Materials for Lithium Ion Batteries. J. Mater. Sci. Technol. 80, 13 (2021).

    Article  CAS  Google Scholar 

  31. Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He, X. Zhang, Y. Li, and K. Wu, Hollow Core-Shell Structured Silicon@Carbon Nanoparticles Embed in Carbon Nanofibers as Binder-Free Anodes for Lithium-Ion Batteries. J. Power Sources. 342, 467 (2017).

    Article  CAS  Google Scholar 

  32. L. Gao, C. Gu, J. Zhao, X. Song, and J. Huang, Preparation of Manganese Monoxide@Reduced Graphene Oxide Nanocomposites with Superior Electrochemical Performances For Lithium-Ion Batteries. Ceram. Int. 45, 3425 (2019).

    Article  CAS  Google Scholar 

  33. D. Sun, Y. Tang, D. Ye, J. Yan, H. Zhou, and H. Wang, Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Appl. Mater. Interfaces 9, 5254 (2017).

    Article  CAS  Google Scholar 

  34. J. Zhu, X. Zuo, X. Chen, and Y. Ding, MOF-Derived MnO/C Composites as High-Performance Lithium-Ion Battery Anodes. Synth. Met. 280, 116872 (2021).

    Article  CAS  Google Scholar 

  35. F. Zheng, Z. Yin, H. Xia, G. Bai, and Y. Zhang, Porous MnO@C Nanocomposite Derived from Metal-Organic Frameworks as Anode Materials for Long-Life Lithium-Ion Batteries. Chem. Eng. J. 327, 474 (2017).

    Article  CAS  Google Scholar 

  36. M. Zhang, P. Pan, Z. Cheng, J. Mao, L. Jiang, C. Ni, S. Park, K. Deng, Y. Hu, and K.K. Fu, Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. Nano. Lett. 21, 7070 (2021).

    Article  CAS  Google Scholar 

  37. M. Su, S. Liu, L. Tao, Y. Tang, A. Dou, J. Lv, and Y. Liu, Silicon@Graphene Composite Prepared by Spray-Drying Method as Anode for Lithium Ion Batteries. J. Electroanal. Chem. 844, 86 (2019).

    Article  CAS  Google Scholar 

  38. Z. Shen, Y. Hu, Y. Chen, R. Chen, X. He, X. Zhang, H. Shao, and Y. Zhang, Controllable Synthesis Of Carbon-Coated Sn-SnO2-Carbon-Nanofiber Membrane as Advanced Binder-Free Anode for Lithium-Ion Batteries. Electrochim. Acta. 188, 661 (2016).

    Article  CAS  Google Scholar 

  39. G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, and K. Sun, A Self-Supported Metal-Organic Framework Derived Co3O4 film Prepared by an in-situ Electrochemically Assistant Process as Li Ion Battery Anodes. J. Power Sources. 389, 8 (2018).

    Article  CAS  Google Scholar 

  40. H. Zheng, L. Li, L. Lu, Q. Zhang, S. Xu, C. Feng, and S. Wang, Facile Synthesis of Porous Mn2O3 Microspheres as Anode Materials for Lithium Ion Batteries. J. Nanosci. Nanotechnol. 16, 698 (2016).

    Article  CAS  Google Scholar 

  41. Y. Zhou, M. Zhang, X. Yan, Q. Han, C. Dong, X. Sun, D. You, and F. Jiang, Spherical-Graphite/Nano-Mn2O3 Composites as Advanced Anode Materials for Lithium Half/Full Batteries. J. Alloys Compd. 853, 157109 (2021).

    Article  CAS  Google Scholar 

  42. Q. Xie, Y. Zhang, Y. Zhu, W. Fu, X. Zhang, P. Zhao, and S. Wu, Graphene Enhanced Anchoring of Nanosized Co3O4 Particles on Carbon Fiber Cloth as Free-Standing Anode for Lithium-Ion Batteries with Superior Cycling Stability. Electrochim. Acta 247, 125 (2017).

    Article  CAS  Google Scholar 

  43. Y. Wei, F. Yan, X. Tang, Y. Luo, M. Zhang, W. Wei, and L. Chen, (2015) Solvent-Controlled Synthesis of NiO-CoO/Carbon Fiber Nanobrushes with Different Densities and their Excellent Properties for Lithium Ion Storage. ACS Appl. Mater. Interfaces. 7, 21703 (2015).

    Article  CAS  Google Scholar 

  44. Y. Mai, J. Tu, X. Xia, C. Gu, and X. Wang, Co-Doped NiO Nanoflake Arrays Toward Superior Anode Materials for Lithium Ion Batteries. J. Power Sources. 196, 6388 (2011).

    Article  CAS  Google Scholar 

  45. J. Shao, H. Zhou, M. Zhu, J. Feng, and A. Yuan, Carbon Cloth-Supported Fe2O3 Derived from Prussian Blue as Self-Standing Anodes for High-Performance Lithium-Ion Batteries. J. Nanopart. Res. 21, 79 (2019).

    Article  CAS  Google Scholar 

  46. Y. Kobayashi, J. Abe, K. Kawase, K. Takahashi, B. Vogt, and S. Shiratori, Enhanced Stability of Smoothly Electrodeposited Amorphous Fe2O3@Electrospun Carbon Nanofibers as Self-Standing Anodes for Lithium Ion Batteries. New J. Chem. 42, 1867 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We appreciate the financial supporting from High-energy Beam Intelligent Processing and Green Manufacturing Project of Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yang, Q. Metal-Organic Framework Derived MnO/Carbon Cloth Loaded by MnO Nanoparticles as a High-Performance Self-Supporting Anode for Lithium-Ion Batteries. J. Electron. Mater. 51, 5273–5281 (2022). https://doi.org/10.1007/s11664-022-09774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09774-6

Keywords

Navigation