Skip to main content
Log in

Fabrication of Al and La co-doped CdS thin film for ammonia gas-sensing application through low-cost nebulizer spray pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By employing a nebulizer spray pyrolysis approach, thin films of CdS, Al, La, and Al–La co-doped CdS thin films have been effectively formed on glass substrates, and their physical characteristics have been examined. The structural investigations confirmed the hexagonal structure of CdS with a preference for orientation along the (1 0 1) plane. The maximum crystallite size was observed for the Al–La co-doped CdS film compared to other prepared thin films. The granular structure was distributed uniformly for all the films according to FESEM data. To determine the optical characteristics with Al, La, and Al–La co-doping, transmittance was examined and found that the Al–La co-doped CdS thin film exhibit lower transparency due to enhanced light scattering. The energy band-gap value slightly decreased from 1.58 to 1.56 eV for the undoped and co-doped CdS films. The doping causes an enhancement of the emission peaks for doped and co-doped CdS films at ambient temperature, and the gas-sensing performance of both pristine and doped CdS thin films was examined for ammonia (NH3) gas. Doped CdS films were shown to be significantly more sensitive and a higher gas response (1390) to NH3 than pristine CdS thin film. The present study also showed that the co-doping of Al and La with CdS exhibited a faster response and recovery time of (42/21 s) during NH3 gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. P. Dhamodharan, J. Chen, C. Manoharan, Fabrication of In doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surf. Interfaces 23, 100965 (2021). https://doi.org/10.1016/j.surfin.2021.100965

    Article  CAS  Google Scholar 

  2. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Mater. Res. Technol. 8, 2021–2030 (2019). https://doi.org/10.1016/j.jmrt.2018.10.017

    Article  CAS  Google Scholar 

  3. A. Fernández-Pérez, C. Navarrete, P. Valenzuela, W. Gacitúa, E. Mosquera, H. Fernández, Characterization of chemically-deposited aluminum-doped CdS thin films with post-deposition thermal annealing. Thin Solid Films 623, 127–134 (2017). https://doi.org/10.1016/j.tsf.2016.12.036

    Article  ADS  CAS  Google Scholar 

  4. S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J. Kim, V.B. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014). https://doi.org/10.1039/c4ra06531j

    Article  ADS  CAS  Google Scholar 

  5. K.C. Wilson, M. Basheer Ahamed, Influence of bath temperature on surface modification and optoelectronic properties of chemical bath deposited CdS thin film nanostructures. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 251, 114444 (2019). https://doi.org/10.1016/j.mseb.2019.114444

    Article  CAS  Google Scholar 

  6. N. Nobari, M. Behboudnia, R. Maleki, Systematics in morphological, structural and optoelectrical properties of nanocrystalline CdS thin films grown by electrodeposition method. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 224, 181–189 (2017). https://doi.org/10.1016/j.mseb.2017.08.002

    Article  CAS  Google Scholar 

  7. J.I. Contreras-Rascón, J. Diáz-Reyes, A. Flores-Pacheco, L.E. Serrano-De La Rosa, P. Del Ángel Vicente, R. Lozada Morales, M.E. Álvarez Ramos, P. López Salazar, Enhanced photoluminescence effects in nanostructured cubic CdS matrix doped with Cu2+ obtained by chemical Bath deposition. J. Mater. Res. Technol. 9, 364–372 (2020). https://doi.org/10.1016/j.jmrt.2019.10.065

    Article  CAS  Google Scholar 

  8. F.J. Willars-Rodríguez, I.R. Chávez-Urbiola, R. Ramírez-Bon, P. Vorobiev, Y.V. Vorobiev, Effects of aluminum doping in CdS thin films prepared by CBD and the performance on Schottky diodes TCO/CdS:Al/C. J. Alloys Compd. 817, 152740 (2020). https://doi.org/10.1016/j.jallcom.2019.152740

    Article  CAS  Google Scholar 

  9. M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuators B Chem. 301, 126845 (2019). https://doi.org/10.1016/j.snb.2019.126845

    Article  CAS  Google Scholar 

  10. M.A. Manthrammel, M. Shkir, M. Anis, S.S. Shaikh, H.E. Ali, S. AlFaify, Facile spray pyrolysis fabrication of Al:CdS thin films and their key linear and third order nonlinear optical analysis for optoelectronic applications. Opt. Mater. (Amst) 100, 109696 (2020). https://doi.org/10.1016/j.optmat.2020.109696

    Article  CAS  Google Scholar 

  11. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Effect of Aluminium doping on photoluminescence and third-order nonlinear optical properties of nanostructured CdS thin films for photonic device applications. Phys. B Condens. Matter 555, 145–151 (2019). https://doi.org/10.1016/j.physb.2018.11.054

    Article  ADS  CAS  Google Scholar 

  12. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/18/185304

    Article  Google Scholar 

  13. S.J. Ikhmayies, R.N. Ahmad-Bitar, Effects of processing on the electrical and structural properties of spray deposited CdS: In thin films. Phys. B Condens. Matter. 404, 2419–2424 (2009). https://doi.org/10.1016/j.physb.2009.04.052

    Article  ADS  CAS  Google Scholar 

  14. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255, 4129–4134 (2009). https://doi.org/10.1016/j.apsusc.2008.10.115

    Article  ADS  CAS  Google Scholar 

  15. L. Saravanan, R. Jayavel, S. Aldeyab, J. Zaidi, K. Ariga, A. Vinu, Synthesis and morphological control of europium doped cadmium sulphide nanocrystals. J. Nanosci. Nanotechnol. 11, 7783–7788 (2011). https://doi.org/10.1166/jnn.2011.4728

    Article  CAS  PubMed  Google Scholar 

  16. L. Saravanan, A. Pandurangan, R. Jayavel, Synthesis and luminescence enhancement of Cerium doped CdS nanoparticles. Mater. Lett. 66, 343–345 (2012). https://doi.org/10.1016/j.matlet.2011.09.006

    Article  CAS  Google Scholar 

  17. Y. Hanifehpour, N. Hamnabard, S. Joo, Sonochemical synthesis, characterization and sonocatalytic performance of terbium-doped CdS nanoparticles. J. Inorg. Organomet. Polym. Mater.Organomet. Polym. Mater. (2016). https://doi.org/10.1007/s10904-016-0352-4

    Article  Google Scholar 

  18. M.A. Manthrammel, V. Ganesh, M. Shkir, I.S. Yahia, S. Alfaify, Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application. Mater. Res. Express. 6, 25022 (2019). https://doi.org/10.1088/2053-1591/aaed9c

    Article  CAS  Google Scholar 

  19. Y. Qin, F. Fang, Z. Xie, H. Lin, K. Zhang, X. Yu, K. Chang, La, Al-Co doped SrTiO3 as a photocatalyst in overall water splitting: significant surface engineering effects on defect engineering. ACS Catal.Catal. 11, 11429–11439 (2021). https://doi.org/10.1021/acscatal.1c02874

    Article  CAS  Google Scholar 

  20. X. Zhu, L. Pei, R. Zhu, Y. Jiao, R. Tang, W. Feng, Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci. Rep. 8, 1–14 (2018). https://doi.org/10.1038/s41598-018-30050-3

    Article  ADS  CAS  Google Scholar 

  21. R.A. Gunasekaran, P.L. Steger, On the effect of Cd doping and Cd-La codoping in YBa2Cu3O7–δ. Mater. Lett. 28, 251–257 (1996). https://doi.org/10.1016/0167-577X(96)00032-8

    Article  CAS  Google Scholar 

  22. R. Sharma, G. Dhyani, S. Ojha, U.C. Srivastava, O.P. Sinha, Study on gas sensing properties of CdS and PVP capped CdS nanoparticles. Mater. Today Proc. 49, 3310–3314 (2020). https://doi.org/10.1016/j.matpr.2021.01.080

    Article  CAS  Google Scholar 

  23. R.Y. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, Optical-energy properties of CdS thin films obtained by the method of high-frequency magnetron sputtering. Opt. Spectrosc. 126, 220–225 (2019). https://doi.org/10.1134/S0030400X19030160

    Article  ADS  CAS  Google Scholar 

  24. S.A.-J. Jassim, A.A.R.A. Zumaila, G.A.A. Al Waly, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys. 3, 173–178 (2013). https://doi.org/10.1016/j.rinp.2013.08.003

    Article  ADS  Google Scholar 

  25. M.F. Rahman, J. Hossain, A.B.M. Ismail, Structural, surface morphological and optical properties and their correlation with the thickness of spin coated superior quality CdS thin film synthesized using a novel chemical route. SN Appl. Sci. 2, 1956 (2020). https://doi.org/10.1007/s42452-020-03836-2

    Article  CAS  Google Scholar 

  26. S.A. Vanalakar, V.L. Patil, S.M. Patil, S.P. Deshmukh, P.S. Patil, J.H. Kim, Chemical and gas sensing property tuning of cadmium sulfide thin films. Mater. Sci. Eng. B 282, 115787 (2022). https://doi.org/10.1016/j.mseb.2022.115787

    Article  CAS  Google Scholar 

  27. K. Veerathangam, M. Senthil Pandian, P. Ramasamy, Photovoltaic performance of Pb-doped CdS quantum dots for solar cell application. Mater. Lett. 220, 74–77 (2018). https://doi.org/10.1016/j.matlet.2018.03.007

    Article  CAS  Google Scholar 

  28. H. Khallaf, I.O. Oladeji, L. Chow, Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin Solid Films 516, 5967–5973 (2008). https://doi.org/10.1016/j.tsf.2007.10.079

    Article  ADS  CAS  Google Scholar 

  29. F. Yang, X. Tian, K. Zhang, X. Zhang, L. Liu, The morphology-property effect and synergetic catalytic effect of CdS as electrocatalysts for dye-sensitized solar cells. ECS J. Solid State Sci. Technol. 7, P311–P316 (2018). https://doi.org/10.1149/2.0111806jss

    Article  CAS  Google Scholar 

  30. S. Yilmaz, Y. Atasoy, M. Tomakin, E. Bacaksiz, Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis. Superlatt. Microstruct. 88, 299–307 (2015). https://doi.org/10.1016/j.spmi.2015.09.021

    Article  ADS  CAS  Google Scholar 

  31. M.G. Faraj, M.Z. Pakhuruddin, P. Taboada, Structural and optical properties of cadmium sulfide thin films on flexible polymer substrates by chemical spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 6628–6634 (2017). https://doi.org/10.1007/s10854-017-6353-4

    Article  CAS  Google Scholar 

  32. D.I. Halge, V.N. Narwade, P.M. Khanzode, S. Begum, I. Banerjee, J.W. Dadge, J. Kovac, A.S. Rana, K.A. Bogle, Development of highly sensitive and ultra-fast visible-light photodetector using nano-CdS thin film. Appl. Phys. A 127, 446 (2021). https://doi.org/10.1007/s00339-021-04611-9

    Article  ADS  CAS  Google Scholar 

  33. S. Saravanakumar, K.S. Usha, G. Vijaya-Prasath, Ammonia gas sensing performance of Co/Ni co-doped CdS thin films by chemical bath deposition. J. Mater. Sci. Mater. Electron. 34, 1–14 (2023). https://doi.org/10.1007/s10854-022-09396-y

    Article  CAS  Google Scholar 

  34. D. Herrera-Molina, J.E. Diosa, A. Fernández-Pérez, E. Mosquera-Vargas, Influence of aluminum doping on structural, morphological, vibrational, and optical properties of CdS thin films obtained by chemical bath deposition. Mater. Sci. Eng. B 273, 115451 (2021). https://doi.org/10.1016/j.mseb.2021.115451

    Article  CAS  Google Scholar 

  35. A.H. Rubel, J. Podder, Structural and electrical transport properties of CdS and Al-doped CdS thin films deposited by spray pyrolysis. J. Sci. Res. 4, 11 (2011). https://doi.org/10.3329/jsr.v4i1.8548

    Article  CAS  Google Scholar 

  36. N. Rouabah, B. Boudine, R. Nazir, M. Zaabat, M. Sebais, O. Halimi, M.T. Soltani, A. Chala, Structural, optical and photocatalytic properties of PVC/CdS nanocomposites prepared by soft chemistry method. J. Inorg. Organomet. Polym. Mater. 31, 1102–1110 (2021). https://doi.org/10.1007/s10904-020-01752-x

    Article  CAS  Google Scholar 

  37. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Effect of Mg/Co on the properties of CdS thin films deposited by spray pyrolysis technique. Curr. Appl. Phys. 19, 1136–1144 (2019). https://doi.org/10.1016/j.cap.2019.07.008

    Article  ADS  Google Scholar 

  38. P.C. Dey, R. Das, Photoluminescence quenching in ligand free CdS nanocrystals due to silver doping along with two high energy surface states emission. J. Lumin. 183, 368–376 (2017). https://doi.org/10.1016/j.jlumin.2016.11.071

    Article  CAS  Google Scholar 

  39. S.R. Dhage, H.A. Colorado, H.T. Hahn, Photoluminescence properties of thermally stable highly crystalline CdS nanoparticles. Mater. Res. 16, 504–507 (2013). https://doi.org/10.1590/S1516-14392013005000020

    Article  CAS  Google Scholar 

  40. T. Fu, Sensing behavior of CdS nanoparticles to SO2, H2S and NH3 at room temperature. Mater. Res. Bull. 48, 1784–1790 (2013). https://doi.org/10.1016/j.materresbull.2013.01.037

    Article  CAS  Google Scholar 

  41. P. Yadav, A.K. Sharma, S.K. Yadav, A.K. Vishwakarma, L. Yadava, Sensing response of toluene gas and structural properties of CdS-SnO2 thick films sensor. Mater. Today Proc. 38, 2792–2796 (2020). https://doi.org/10.1016/j.matpr.2020.08.735

    Article  CAS  Google Scholar 

  42. A.K. Vishwakarma, A.K. Sharma, N.K. Yadav, L. Yadava, Development of CdS-doped TiO2 nanocomposite as acetone gas sensor. Vacuum 191, 110363 (2021). https://doi.org/10.1016/j.vacuum.2021.110363

    Article  ADS  CAS  Google Scholar 

  43. M. Prabhu, V.S. Manikandan, N. Soundararajan, K. Ramachandran, Ethanol gas sensing by Zn-doped CdS/CdTe nanoparticles. AIP Conf. Proc. 1731, 1–4 (2016). https://doi.org/10.1063/1.4947795

    Article  Google Scholar 

  44. S.M.H. Al-Jawad, S.N. Rafic, M.M. Muhsen, Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application. Mod. Phys. Lett. B 31, 1–15 (2017). https://doi.org/10.1142/S0217984917502347

    Article  CAS  Google Scholar 

  45. Q. Zhang, S. Ma, R. Zhang, K. Zhu, Y. Tie, S. Pei, Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J. Alloys Compd. 807, 151650 (2019). https://doi.org/10.1016/j.jallcom.2019.151650

    Article  CAS  Google Scholar 

  46. Y. Xiong, W. Xu, D. Ding, W. Lu, L. Zhu, Z. Zhu, Y. Wang, Q. Xue, Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability. J. Hazard. Mater. 341, 159–167 (2018). https://doi.org/10.1016/j.jhazmat.2017.07.060

    Article  CAS  PubMed  Google Scholar 

  47. A. Akbar, M. Das, D. Sarkar, Room temperature ammonia sensing by CdS nanoparticle decorated polyaniline (PANI) nanorods. Sens. Actuators A Phys. 310, 112071 (2020). https://doi.org/10.1016/j.sna.2020.112071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extends their appreciation to the research center for advance materials science (RCAMS), King Khalid University for funding this work under Grant No. RCAMS/KKU/026-23.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the article. KHP: investigation, writing, and formal analysis. SV: review, writing original article, and source. VG: investigation, original writing analysis, and characterization. RA: writing and formal analysis.

Corresponding author

Correspondence to S. Vinoth.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies involving animals performed by any authors. Also, this article does not contain any studies involving human participants performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari Prasad, K., Vinoth, S., Ganesh, V. et al. Fabrication of Al and La co-doped CdS thin film for ammonia gas-sensing application through low-cost nebulizer spray pyrolysis technique. Appl. Phys. A 130, 204 (2024). https://doi.org/10.1007/s00339-024-07355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07355-4

Keywords

Navigation