Skip to main content

Advertisement

Log in

Adhesion nanoarchitectonics of inkjet-printed silver nanoparticles on various substrates after furnace sintering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The adhesion behavior of inkjet-printed silver nanoparticles (Ag NPs) on various substrates was investigated after furnace sintering at various temperatures. Glass, polyimide, and polyethylene naphthalate substrates were used to examine the effect of the substrate on the adhesion behavior of inkjet-printed Ag NPs. The adhesive forces were estimated using a scratch test. The critical load and shear stress were determined via a microscratch test. The critical shear stress varies according to the adhesion characteristics of each substrate. Cross-sectional images were obtained using a focused ion beam to investigate the morphologies at the boundaries between the sintered ink line and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request from the authors.

References

  1. A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26, 281–288 (2005). https://doi.org/10.1002/marc.200400522

    Article  Google Scholar 

  2. A. Hussain, H.L. Lee, S.J. Moon, Sintering of silver nanoparticle structures and the pursuit of minimum resistivity. Mater. Today Commun. 34, 105159 (2023). https://doi.org/10.1016/j.mtcomm.2022.105159

    Article  Google Scholar 

  3. H.H. Lee, K. Sen Chou, K.C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436–2441 (2005). https://doi.org/10.1088/0957-4484/16/10/074

    Article  ADS  PubMed  Google Scholar 

  4. K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, A. Chiolerio, Silver nanoparticle ink technology: state of the art. Nanotechnol. Sci. Appl.. Sci. Appl. (2016). https://doi.org/10.2147/NSA.S68080

    Article  Google Scholar 

  5. Y. Aono, M. Maejima, S. Momozono, A. Hirata, Batch-arrangement of droplets on silica surface based on laser wettability modification. Surfaces Interfaces. 42, 103452 (2023). https://doi.org/10.1016/j.surfin.2023.103452

    Article  Google Scholar 

  6. V. Beedasy, P.J. Smith, Printed electronics as prepared by inkjet printing. Mater 13, 704 (2020). https://doi.org/10.3390/MA13030704

    Article  Google Scholar 

  7. V. Subramanian, J.M.J. Fréchet, P.C. Chang, D.C. Huang, J.B. Lee, S.E. Molesa, A.R. Murphy, D.R. Redinger, S.K. Volkman, Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005). https://doi.org/10.1109/JPROC.2005.850305

    Article  Google Scholar 

  8. L. Nayak, S. Mohanty, S.K. Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C. (2019). https://doi.org/10.1039/c9tc01630a

    Article  Google Scholar 

  9. J. Kwon, H. Cho, H. Eom, H. Lee, Y.D. Suh, H. Moon, J. Shin, S. Hong, S.H. Ko, Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Appl. Mater. Interfaces 8, 11575–11582 (2016). https://doi.org/10.1021/acsami.5b12714

    Article  PubMed  Google Scholar 

  10. B. Huber, J. Schober, A. Kreuzer, M. Kaiser, A. Ruediger, C. Schindler, Inkjet-printed resistive memory cells for transparent electronics. Microelectron. Eng. (2018). https://doi.org/10.1016/j.mee.2018.03.006

    Article  Google Scholar 

  11. Y. Wang, C. Yan, S.Y. Cheng, Z.Q. Xu, X. Sun, Y.H. Xu, J.J. Chen, Z. Jiang, K. Liang, Z.S. Feng, Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater.Funct. Mater. (2019). https://doi.org/10.1002/adfm.201902579

    Article  Google Scholar 

  12. J. Zhang, B. Geng, S. Duan, C. Huang, Y. Xi, Q. Mu, H. Chen, X. Ren, W. Hu, High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. J. Mater. Chem. C. 8, 15219–15223 (2020). https://doi.org/10.1039/d0tc02508a

    Article  ADS  Google Scholar 

  13. C. Martínez-Domingo, S. Conti, A. de la Escosura-Muñiz, L. Terés, A. Merkoçi, E. Ramon, Organic-based field effect transistors for protein detection fabricated by inkjet-printing. Org. Electron. 84, 1–9 (2020). https://doi.org/10.1016/j.orgel.2020.105794

    Article  Google Scholar 

  14. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fráchet, D. Poulikakos, Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90, 1–3 (2007). https://doi.org/10.1063/1.2719162

    Article  Google Scholar 

  15. E. Fares, B. Aïssa, R.J. Isaifan, Inkjet printing of metal oxide coatings for enhanced photovoltaic soiling environmental applications. Glob. J. Environ. Sci. Manag. 8, 485–502 (2022). https://doi.org/10.22034/GJESM.2022.04.03

    Article  Google Scholar 

  16. S.G. Hashmi, M. Ozkan, J. Halme, K.D. Misic, S.M. Zakeeruddin, J. Paltakari, M. Grätzel, P.D. Lund, High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy 17, 206–215 (2015). https://doi.org/10.1016/j.nanoen.2015.08.019

    Article  Google Scholar 

  17. A. Hussain, N. Abbas, A. Ali, Inkjet printing: a viable technology for biosensor fabrication. Chemosensors (2022). https://doi.org/10.3390/chemosensors10030103

    Article  Google Scholar 

  18. M.A. Zamzami, G. Rabbani, A. Ahmad, A.A. Basalah, W.H. Al-Sabban, S. Nate Ahn, H. Choudhry, Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 143, 107982 (2022). https://doi.org/10.1016/j.bioelechem.2021.107982

    Article  PubMed  Google Scholar 

  19. Y. Liu, H. Zhu, L. Xing, Q. Bu, D. Ren, B. Sun, Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 15, 6025–6051 (2023). https://doi.org/10.1039/d2nr05649f

    Article  PubMed  Google Scholar 

  20. K. Yan, J. Li, L. Pan, Y. Shi, Inkjet printing for flexible and wearable electronics. APL Mater. (2020). https://doi.org/10.1063/5.0031669

    Article  Google Scholar 

  21. Y. Han, J. Zhang, Y. Liu, M. Sheng, X. Wang, T. Sun, Investigation of through micropatterns fabrication on C194 copper foil by ultraviolet nanosecond pulsed laser microdrilling. Opt. Laser Technol. 160, 109092 (2023). https://doi.org/10.1016/j.optlastec.2022.109092

    Article  Google Scholar 

  22. E. Sowade, H. Kang, K.Y. Mitra, O.J. Weiß, J. Weber, R.R. Baumann, Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C. 3, 11815–11826 (2015). https://doi.org/10.1039/c5tc02291f

    Article  Google Scholar 

  23. J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U.S. Schubert, D. Lupo, Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films 556, 452–459 (2014). https://doi.org/10.1016/j.tsf.2014.02.001

    Article  ADS  Google Scholar 

  24. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures. Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/17/175201

    Article  PubMed  Google Scholar 

  25. A.T. Alastalo, T. Mattila, M.L. Allen, M.J. Aronniemi, J.H. Leppäniemi, K.A. Ojanperä, M.P. Suhonen, H. Seppä, Rapid electrical sintering of nanoparticle stuctures. Mater. Res. Soc. Symp. Proc. (2008). https://doi.org/10.1557/proc-1113-f02-07

    Article  Google Scholar 

  26. D. Kim, A. Hussain, H.L. Lee, Y.J. Moon, J. Hwang, S.J. Moon, Stepwise current increment sintering of silver nanoparticle structures. Crystals 11, 1264 (2021). https://doi.org/10.3390/cryst11101264

    Article  Google Scholar 

  27. I. Lee, A. Hussain, H.L. Lee, Y.J. Moon, J.Y. Hwang, S.J. Moon, The effect of current supply duration during stepwise electrical sintering of silver nanoparticles. Metals (Basel). 11, 1878 (2021). https://doi.org/10.3390/met11111878

    Article  Google Scholar 

  28. J. Perelaer, B.J. De Gans, U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. (2006). https://doi.org/10.1002/adma.200502422

    Article  Google Scholar 

  29. M. Allen, A. Alastalo, M. Suhonen, T. Mattila, J. Leppäniemi, H. Seppä, Contactless electrical sintering of silver nanoparticles on flexible substrates. IEEE Trans. Microw. Theory Tech. (2011). https://doi.org/10.1109/TMTT.2011.2123910

    Article  Google Scholar 

  30. A. Hussain, H.L. Lee, S.J. Moon, The effect of double scans and elliptical beam during sintering of silver nanoparticle structures via a modulated laser beam. Int. J. Heat Mass Transf. 213, 124310 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124310

    Article  Google Scholar 

  31. J. Chung, S. Han, D. Lee, S. Ahn, C.P. Grigoropoulos, J. Moon, S.H. Ko, Nanosecond laser ablation of silver nanoparticle film. Opt. Eng. 52, 024302 (2013). https://doi.org/10.1117/1.oe.52.2.024302

    Article  ADS  Google Scholar 

  32. D.G. Lee, D.K. Kim, Y.J. Moon, S.J. Moon, Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement. J. Nanosci. Nanotechnol. (2013). https://doi.org/10.1166/jnn.2013.7650

    Article  PubMed  Google Scholar 

  33. J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40, 2268–2277 (2011). https://doi.org/10.1007/s11664-011-1711-0

    Article  ADS  Google Scholar 

  34. K. Ryu, Y.J. Moon, K. Park, J.Y. Hwang, S.J. Moon, Electrical property and surface morphology of silver nanoparticles after thermal sintering. J. Electron. Mater. 45, 312–321 (2016). https://doi.org/10.1007/s11664-015-4073-1

    Article  ADS  Google Scholar 

  35. A. Hussain, H.-L. Lee, Y.-J. Moon, J.Y. Hwang, S.-J. Moon, Effect of pulse overlapping on temperature field and physical characteristics in pulsed laser sintering of inkjet-printed silver nanoparticles. Int. J. Heat Mass Transf. 202, 123678 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123678

    Article  Google Scholar 

  36. D. Paeng, J. Yeo, D. Lee, S.J. Moon, C.P. Grigoropoulos, Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl. Phys. A Mater. Sci. Process. 120, 1229–1240 (2015). https://doi.org/10.1007/s00339-015-9320-z

    Article  ADS  Google Scholar 

  37. J.H. Choi, K. Ryu, K. Park, S.J. Moon, Thermal conductivity estimation of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Int. J. Heat Mass Transf. (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.056

    Article  Google Scholar 

  38. I. Lee, K. Ryu, K.H. Park, Y.J. Moon, J.Y. Hwang, S.J. Moon, Temperature effect on physical properties and surface morphology of printed silver ink during continuous laser scanning sintering. Int. J. Heat Mass Transf. 108, 1960–1968 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.095

    Article  Google Scholar 

  39. T.Y. Kim, J.Y. Hwang, S.J. Moon, Laser curing of the silver/copper nanoparticle ink via optical property measurement and calculation. Jpn. J. Appl. Phys. (2010). https://doi.org/10.1143/JJAP.49.05EA09

    Article  Google Scholar 

  40. Y.J. Moon, H. Kang, K. Kang, S.J. Moon, J. Young Hwang, Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering. J. Electron. Mater. 44, 1192–1199 (2015). https://doi.org/10.1007/s11664-015-3639-2

    Article  ADS  Google Scholar 

  41. D. Kim, I. Lee, Y. Yoo, Y.J. Moon, S.J. Moon, Transient variation of a cross-sectional area of inkjet-printed silver nanoparticle ink during furnace sintering. Appl. Surf. Sci. 305, 453–458 (2014). https://doi.org/10.1016/j.apsusc.2014.03.110

    Article  ADS  Google Scholar 

  42. H.-J. Park, Physical characteristics of Ag nanoparticle inks with different size during thermal sintering (Hanyang University, 2016)

    Google Scholar 

  43. J. Heitz, E. Arenholz, T. Kefer, D. Bäuerle, H. Hibst, A. Hagemeyer, Enhanced adhesion of metal films on PET after UV-laser treatment. Appl. Phys. A Solids Surfaces. 55, 391–392 (1992). https://doi.org/10.1007/BF00324090

    Article  ADS  Google Scholar 

  44. H. Yu, X. Zhang, H. Zheng, D. Li, Z. Pu, An inkjet-printed bendable antenna for wearable electronics. Int. J. Bioprinting. (2023). https://doi.org/10.18063/ijb.722

    Article  Google Scholar 

  45. K.-S. Kim, Y. Kim, S.-B. Jung, Microstructure and adhesion characteristics of a silver nanopaste screen-printed on Si substrate. Nanoscale Res. Lett. 7, 2–7 (2012). https://doi.org/10.1186/1556-276x-7-49

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. K. Tanaka, K. Gunji, T. Katayama, Nanoscratch evaluation of adhesive strength of Cu/PI films. WIT Trans. Eng. Sci. 55, 303–311 (2007). https://doi.org/10.2495/SECM070291

    Article  Google Scholar 

  47. D. Kuczyńska-Zemła, J. Pura, B. Przybyszewski, M. Pisarek, H. Garbacz, A comparative study of apatite growth and adhesion on a laser-functionalized titanium surface. Tribol. Int. 182, 108338 (2023). https://doi.org/10.1016/j.triboint.2023.108338

    Article  Google Scholar 

  48. M. Zawischa, M.M.A. Bin Mohamad Supian, S. Makowski, F. Schaller, V. Weihnacht, Generalized approach of scratch adhesion testing and failure classification for hard coatings using the concept of relative area of delamination and properly scaled indenters. Surf. Coatings Technol. 415, 127118 (2021). https://doi.org/10.1016/j.surfcoat.2021.127118

    Article  Google Scholar 

  49. M. Paz Martinez Viademonte, S.T. Abrahami, T. Hack, M. Burchardt, H. Terryn, Adhesion properties of tartaric sulfuric acid anodic films assessed by a fast and quantitative peel tape adhesion test. Int. J. Adhes. Adhes.Adhes. Adhes. 116, 103156 (2022). https://doi.org/10.1016/j.ijadhadh.2022.103156

    Article  Google Scholar 

  50. J. Yeo, G. Kim, S. Hong, M.S. Kim, D. Kim, J. Lee, H.B. Lee, J. Kwon, Y.D. Suh, H.W. Kang, H.J. Sung, J.H. Choi, W.H. Hong, J.M. Ko, S.H. Lee, S.H. Choa, S.H. Ko, Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. J. Power. Sources 246, 562–568 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.012

    Article  ADS  Google Scholar 

  51. T.V. Birro, M. Aufray, E. Paroissien, F. Lachaud, Assessment of interface failure behaviour for brittle adhesive using the three-point bending test. Int. J. Adhes. Adhes. 110, 1–20 (2021). https://doi.org/10.1016/j.ijadhadh.2021.102891

    Article  Google Scholar 

  52. K. Ariga, R. Fakhrullin, Materials nanoarchitectonics from atom to living cell: a method for everything. Bull. Chem. Soc. Jpn 95, 774–795 (2022). https://doi.org/10.1246/bcsj.20220071

    Article  Google Scholar 

  53. D. Akay, E. Seven, U. Gökmen, S. Bi̇lge-Ocak, Semiconducting double-layer lead monoxide tin oxide nanostructures for photodetectors. ACS Appl. Nano Mater. (2023). https://doi.org/10.1021/acsanm.3c02610

    Article  Google Scholar 

  54. D. Akay, U. Gokmen, S.B. Ocak, Ionizing radiation influence on rubrene-based metal polymer semiconductors: direct information of intrinsic electrical properties. Jom. 72, 2391–2397 (2020). https://doi.org/10.1007/s11837-020-04156-x

    Article  ADS  Google Scholar 

  55. D. Akay, U. Gokmen, S.B. Ocak, Radiation-induced changes on poly(methyl methacrylate) (PMMA)/lead oxide (PbO) composite nanostructure. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab2aa4

    Article  Google Scholar 

  56. D. Akay, U. Gökmen, S.B. Ocak, An evaluation of dielectric qualities by using frequency dependence in superbenzene-ring based organic polymer-semiconductors. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122708

    Article  Google Scholar 

  57. J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989). https://doi.org/10.1016/0040-6090(89)90030-8

    Article  ADS  Google Scholar 

  58. J. Hu, W. Cai, C. Li, Y. Gan, L. Chen, In situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum. Appl. Phys. Lett. 86, 1–3 (2005). https://doi.org/10.1063/1.1901803

    Article  Google Scholar 

  59. E.B.T. Walch, C. Roos, Measurement of the mechanical properties of silver and enamel thick films using nanoindentation. Int. J. Appl. Glas. Sci. 11, 195–206 (2020). https://doi.org/10.1111/ijag.13875

    Article  Google Scholar 

  60. X. Long, W. Tang, W. Xia, Y. Wu, L. Ren, Y. Yao, Porosity and Young’s modulus of pressure-less sintered silver nanoparticles, 2017 IEEE 19th Electron. Packag. Technol. Conf. EPTC 2017. 2018, 1–8 (2018). https://doi.org/10.1109/EPTC.2017.8277577.

  61. T. Liang, D. Zhou, Z. Wu, P. Shi, Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study. Nanotechnology 28, 485704 (2017). https://doi.org/10.1088/1361-6528/aa92ac

    Article  ADS  PubMed  Google Scholar 

  62. S. Neuville, Selective carbon material engineering for improved MEMS and NEMS. Micromachines. (2019). https://doi.org/10.3390/mi10080539

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and ICT (MSIT, Grant No. NP230090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Jae Moon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, T., Lee, HL., Ryu, K. et al. Adhesion nanoarchitectonics of inkjet-printed silver nanoparticles on various substrates after furnace sintering. Appl. Phys. A 130, 192 (2024). https://doi.org/10.1007/s00339-024-07352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07352-7

Keywords

Navigation