Skip to main content
Log in

Laser Direct Writing of Conductive Silver Micropatterns on Transparent Flexible Double-Decker-Shaped Polysilsesquioxane Film Using Silver Nanoparticle Ink

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes fabrication of conductive, highly adhesive silver (Ag) micropatterns on transparent flexible double-decker-shaped polysilsesquioxane (DDPSQ) film by a laser direct writing technique using a precursor film prepared from liquid-dispersed Ag nanoparticles. The laser-written Ag micropatterns have been characterized by optical microscopy, field-emission scanning electron microscopy, surface profilometry, and resistivity measurements. The line width of the Ag micropatterns can be flexibly controlled by changing the objective lens magnification and laser spot size. Using a ×100 objective lens and laser energy density of 170.50 kW/cm2, Ag micropatterns with line width of about 4 μm have been achieved. The Ag micropatterns show excellent adherence to the DDPSQ surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns has been determined to be 4.1 × 10−6 Ω cm using the two-point probe method, being almost comparable to that of bulk Ag (1.6 × 10−6 Ω cm). Thus, high-quality, narrow, homogeneous Ag microlines with high conductivity and adhesion can be produced under optimized laser scanning conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, and U.S. Schubert, J. Mater. Chem. 20, 8446 (2010).

    Article  Google Scholar 

  2. Y.-L. Tai, Y.-X. Wang, Z.G. Yang, and Z.Q. Chai, Surf. Interface Anal. 43, 1480 (2011).

    Article  Google Scholar 

  3. S. Jang, Y. Seo, J. Choi, T. Kim, J. Cho, S. Kim, and D. Kim, Scripta Mater. 62, 258 (2010).

    Article  Google Scholar 

  4. A. Scandurra, G.F. Indelli, N.G. Spartà, F. Galliano, S. Ravesi, and S. Pignataro, Surf. Interface Anal. 42, 1163 (2010).

    Article  Google Scholar 

  5. M.S. Miller, G.J.E. Davidson, B.J. Sahilo, C.M. Mailloux, and T.B. Carmichael, Adv. Mater. 20, 59 (2008).

    Article  Google Scholar 

  6. B.T. Nguyen, J.E. Gautrot, M.T. Nguyen, and X.X. Zhu, J. Mater. Chem. 17, 1725 (2007).

    Article  Google Scholar 

  7. S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, and J. Moon, Adv. Funct. Mater. 8, 679 (2008).

    Article  Google Scholar 

  8. K.J. Lee, B.H. Jun, T.H. Kim, and J. Joung, Nanotechnology 17, 2424 (2006).

    Article  Google Scholar 

  9. Y.J. Lee, J. Choi, K.J. Lee, N.E. Stott, and D. Kim, Nanotechnology 19, 415604 (2008).

    Article  Google Scholar 

  10. A. Gupta, S. Mandal, M. Katiyar, and Y.N. Mohapatra, Int. J. Nanosci. 10, 659 (2011).

    Article  Google Scholar 

  11. T.H.J. van Osch, J. Perelaer, A.W.M. Laat, and U.S. Schubert, Adv. Mater. 20, 343 (2008).

    Article  Google Scholar 

  12. D. Huang, F. Liao, S. Molesa, S.D. Redinger, and V. Subramanian, J. Electrochem. Soc. 150, G412 (2003).

    Article  Google Scholar 

  13. D. Kim, S. Jeong, J. Moon, and K. Kang, Mol. Cryst. Liq. Cryst. 459, 45 (2006).

    Google Scholar 

  14. D. Kim, S. Jeong, B.K. Park, and J. Moon, Appl. Phys. Lett. 89, 264101(1) (2006).

    Google Scholar 

  15. S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, and D. Poulikakos, Sens. Actuators A 134, 161 (2007).

    Article  Google Scholar 

  16. S.H. Ko, H. Pan, C.P. Grigoropoulos, J.M.J. Frèchet, C.K. Luscombe, and D. Poulikakos, Appl. Phys. A 92, 579 (2008).

    Article  Google Scholar 

  17. J. Perelaer, B.J. Ganas, and U.S. Schubert, Adv. Mater. 18, 2101 (2006).

    Article  Google Scholar 

  18. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert, J. Mater. Chem. 19, 3384 (2009).

    Article  Google Scholar 

  19. S. Wünscher, S. Stumpf, A. Teichler, O. Pabst, J. Perelaer, E. Beckert, and U.S. Schubert, J. Mater. Chem. 22, 24569 (2012).

    Article  Google Scholar 

  20. J.J.P. Valeton, K. Hermans, C.W.M. Bastiaansen, D.J. Broer, J. Perelaer, U.S. Schubert, G.P. Crawford, and P.J. Smith, J. Mater. Chem. 20, 543 (2010).

    Article  Google Scholar 

  21. H.S. Kim, S.R. Dhage, D.E. Shim, and H.T. Hahn, Appl. Phys. A 97, 791 (2009).

    Article  Google Scholar 

  22. J.S. Kang, J. Ryu, H.S. Kim, and H.T. Hahn, J. Electron. Mater. 40, 2268 (2011).

    Article  Google Scholar 

  23. K.C. Yung, X. Gu, C.P. Lee, and H.S. Choy, J. Mater. Process. Technol. 210, 2268 (2010).

    Article  Google Scholar 

  24. M. Hösel and F.C. Krebs, J. Mater. Chem. 22, 15683 (2012).

    Article  Google Scholar 

  25. S.-H. Park, S. Jang, D.-J. Lee, J. Oh, and H.-K. Kim, J. Micromech. Microeng. 23, 015013 (2013).

    Article  Google Scholar 

  26. W.-H. Chung, H.-J. Hwang, S.-H. Lee, and H.-S. Kim, Nanotechnology 24, 035202 (2013).

    Article  Google Scholar 

  27. A. Watanabe, S. Tadenuma, and T. Miyashita, J. Photopolym. Sci. Technol. 21, 317 (2008).

    Article  Google Scholar 

  28. A. Watanabe, S. Tadenuma, and T. Miyashita, Mater. Res. Soc. Symp. Proc. 1056, HH06-05 (2007).

    Article  Google Scholar 

  29. A. Watanabe, Y. Kobayashi, M. Konno, S. Yamada, and T. Miwa, Mol. Cryst. Liq. Cryst. 464, 161 (2007).

    Article  Google Scholar 

  30. A. Watanabe and T. Miyashita, J. Photopolym. Sci. Technol. 20, 115 (2007).

    Article  Google Scholar 

  31. A. Watanabe, Y. Kobayashi, M. Konno, S. Yamada, and T. Miwa, Jpn. J. Appl. Phys. 44, L740 (2005).

    Article  Google Scholar 

  32. M. Aminuzzaman, A. Watanabe, and T. Miyashita, J. Mater. Chem. 18, 5092 (2008).

    Article  Google Scholar 

  33. M. Aminuzzaman, A. Watanabe, and T. Miyashita, J. Nanopart. Res. 12, 931 (2010).

    Article  Google Scholar 

  34. K. Yoshida, Y. Morimoto, K. Watanabe, and N. Ootake, United State Patent 7319129, B2 (2008).

    Google Scholar 

  35. K. Yoshida, T. Hattori, N. Ootake, R. Tanaka, and H. Matsumoto, Silicon Based Polymers, ed. F. Ganachaud, S. Boileau, and B. Boury (Dordrecht: Springer, 2008), p. 205.

    Chapter  Google Scholar 

  36. Md.A Hoque, Y. Kakihana, S. Shinke, and Y. Kawakami, Macromolecules 42, 3309 (2009).

    Article  Google Scholar 

  37. B.-C. Chen, J. Sung, X.X. Wu, and S.-H. Lim, J. Biomed. Opt. 16, 021112 (2011).

    Article  Google Scholar 

  38. W. Don, Y.Q. Zhang, B. Zhang, and X.P. Wang, J. Raman Spectrosc. 44, 1739 (2013).

    Article  Google Scholar 

  39. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso, and J.M.D. Tascon, Carbon 32, 1523 (1994).

    Article  Google Scholar 

  40. A. Watanabe, J. Photopolym. Sci. Tech. 26, 199 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammod Aminuzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminuzzaman, M., Watanabe, A. & Miyashita, T. Laser Direct Writing of Conductive Silver Micropatterns on Transparent Flexible Double-Decker-Shaped Polysilsesquioxane Film Using Silver Nanoparticle Ink. J. Electron. Mater. 44, 4811–4818 (2015). https://doi.org/10.1007/s11664-015-4033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4033-9

Keywords

Navigation