Skip to main content
Log in

Study of structural, electrical and magnetic properties of co-substituted Co1−2xNixMgxFe2O4 (0 ≤ x ≤ 0.25) nanoferrite materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we addressed the synthesis of spinel-structured nano-scaled materials involving Ni2+ and Mg2+ substitutions in (NixMgxCo1−2xFe2O4 with 0 ≤ x ≤ 0.25) through the citric acid-catalyzed sol–gel combustion method. The investigation was motivated by the need to understand the synthesized materials' structural, electrical, and magnetic properties. We identified the problem of the non-uniformly shaped grains and their varying sizes, impacting the overall structure. Our method involved powder X-ray diffraction (XRD) for structural studies, revealing the formation of pure single-phased nanoparticles. The unit cell parameters fell within the range of 8.3782–8.4325 Å, validating the successful synthesis. Morphological analysis further uncovered randomly distributed, non-uniformly shaped grains with varying sizes, influencing the electrical and magnetic properties. Fourier transform infrared spectroscopy (FTIR) confirmed the spinel structure synthesis. The DC electrical resistivity, dielectric, and AC measurements displayed a non-monotonic pattern concerning dopant concentration, highlighting the complexity of the electrical behavior. Dielectric measurements suggested lower frequency dispersion effects attributed to high polarization at grain boundaries. Room temperature magnetic measurements, conducted using a vibrating sample magnetometer (VSM), demonstrated tuned variations in magnetic parameters. In conclusion, our comprehensive analysis provides valuable insights into the synthesis, structure, and properties of spinel-structured materials, contributing to understanding their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The corresponding authors' data supporting this study's findings are available upon reasonable request.

References

  1. P. Avouris, Manipulation of matter at the atomic and molecular levels. Acc. Chem. Res. 28(3), 95–102 (1995). https://doi.org/10.1021/ar00051a002

    Article  Google Scholar 

  2. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116(23), 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  PubMed  Google Scholar 

  3. M. Usman, Y.Z. Wong, C.D. Hill, L.C.L. Hollenberg, Framework for atomic-level characterization of quantum computer arrays by machine learning. NPJ Comput. Mater. 6, 19 (2020). https://doi.org/10.1038/s41524-020-0282-0

    Article  ADS  Google Scholar 

  4. P. Bennema, Theory and experiment for crystal growth from solution: implications for industrial crystallization, in Industrial crystallization. ed. by J.W. Mullin (Springer, Boston, 1976). https://doi.org/10.1007/978-1-4615-7258-9_9

    Chapter  Google Scholar 

  5. S. Song, Y. Wang, K. Wang, F. Chen, Q. Zhang, Decoding the crystal engineering of graphite-like energetic materials: from theoretical prediction to experimental verification. J. Mater. Chem. A (2020). https://doi.org/10.1039/C9TA13381J

    Article  Google Scholar 

  6. R. Valenzuela, Novel applications of ferrites. Phys. Res. Int. 591839, 1–9 (2012). https://doi.org/10.1155/2012/591839

    Article  Google Scholar 

  7. F.A. Hezam, N.O. Khalifa, O. Nur, M.A. Mustafa, Synthesis and magnetic properties of Ni0.5MgxZn0.5xFe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites. Mater. Chem. Phys. 257, 123770 (2021). https://doi.org/10.1016/j.matchemphys.2020.123770

    Article  Google Scholar 

  8. M. Stefanescu, T. Dippong, M. Stoia, O. Stefanescu, Study on the obtaining of cobalt oxides by thermal decomposition of some complex combinations, undispersed and dispersed in SiO2 matrix. J. Therm. Anal. Calorim. 94(2), 389–393 (2008). https://doi.org/10.1007/s10973-008-9111-2

    Article  Google Scholar 

  9. R.M. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, S. Zare, Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5xMgxFe2O4 nanoparticle ferrites. Chin. Phys. B 25(4), 047501 (2016). https://doi.org/10.1088/1674-1056/25/4/047501

    Article  ADS  Google Scholar 

  10. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar, Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni–Mn substitution. Int. J. Mol. Sci. 23(6), 3097 (2022). https://doi.org/10.3390/ijms23063097

    Article  PubMed  PubMed Central  Google Scholar 

  11. E. Abouzir, M. Elansary, M. Belaiche, H. Jaziri, Magnetic and structural properties of single-phase Gd3+-substituted Co–Mg ferrite nanoparticles. RSC Adv. 10, 11244 (2020). https://doi.org/10.1039/d0ra01841d

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. L.M. Thorat, J.Y. Patil, D.Y. Nadargi, U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Co2+ substituted Mg–Cu–Zn ferrite: evaluation of structural, magnetic, and electromagnetic properties. J. Adv. Ceram. 7(3), 207–217 (2018). https://doi.org/10.1007/s40145-018-0272-6

    Article  Google Scholar 

  13. T. Dippong, D. Toloman, M. Dan, E.A. Levei, O. Cadar, Structural, morphological and photocatalytic properties of Ni–Mn ferrites: influence of the Ni: Mn ratio. J. Alloys Compd. 913, 165129 (2022). https://doi.org/10.1016/j.jallcom.2022.165129

    Article  Google Scholar 

  14. T. Dippong, E.A. Levei, C. Leostean, O. Cadar, Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100δ nanocomposites. J. Alloys Compd. 868, 159203 (2021). https://doi.org/10.1016/j.jallcom.2021.159203

    Article  Google Scholar 

  15. T. Dippong, E.-A. Levei, D. Toloman, L. Barbu-Tudoran, O. Cadar, Investigation on the formation, structural and photocatalytic properties of mixed Mn–Zn ferrites nanoparticles embedded in SiO2 matrix. J. Anal. Appl. Pyrol. 158, 105281 (2021). https://doi.org/10.1016/j.jaap.2021.105281

    Article  Google Scholar 

  16. T. Dippong, E.A. Levei, F. Goga et al., Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Mater Charact (2020). https://doi.org/10.1016/j.matchar.2020.110835

    Article  Google Scholar 

  17. K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, S. Uppugalla, T.W. Mammo, D. Kavyasri, N. Murali, M.K. Raju, D. Parajuli, K. Samatha, Influence of Mg2+ and Ce3+ substituted on synthesis, structural, morphological, electrical, and magnetic properties of Cobalt nano ferrites. Inorg. Chem. Commun. 149, 110405 (2023). https://doi.org/10.1016/j.inoche.2023.110405

    Article  Google Scholar 

  18. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, G. Borodi, O. Cadar, Sol–gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix. Nanomaterials 11, 3455 (2021). https://doi.org/10.3390/nano11123455

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Sagadevan, Z.Z. Chowdhury, R.F. Rafique, Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method. Mater. Res. 21(2), e20160533 (2018). https://doi.org/10.1590/1980-5373-MR-2016-0533

    Article  Google Scholar 

  20. T. Dippong, E.A. Levei, O. Cadar, Investigation of structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition. Int. J. Mol. Sci. 23, 8483 (2022). https://doi.org/10.3390/ijms23158483

    Article  PubMed  PubMed Central  Google Scholar 

  21. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, M. Hashim, Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. (2010). https://doi.org/10.1155/2010/907686

    Article  Google Scholar 

  22. X. Zhao, A. Sun, W. Zhang, L. Yu, Z. Zuo, Studies on structural and magnetic properties of Ni–Mg–Co spinel ferrite nanoparticles sintered at different temperatures. Mod. Phys. Lett. B 34(3), 2050041 (2020). https://doi.org/10.1142/S0217984920500414

    Article  ADS  Google Scholar 

  23. B.H. Devmunde, A.V. Raut, S.D. Birajdar, S.J. Shukla, D.R. Shengule, K.M. Jadhav, Structural, electrical, dielectric, and magnetic properties of Cd2+ substituted nickel ferrite nanoparticles. J. Nanopart. 4709687, 1–8 (2016). https://doi.org/10.1155/2016/4709687

    Article  Google Scholar 

  24. R. Kumar, H. Kumar, R.R. Singh, P.B. Barman, Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect. J. Sol-Gel Sci. Technol. (2016). https://doi.org/10.1007/s10971-016-3984-5

    Article  Google Scholar 

  25. K.L. Routray, D. Behera, IOP Conf. Ser. Mater. Sci. Eng. 178, 012007 (2017). https://doi.org/10.1088/1757-899X/178/1/012007

    Article  Google Scholar 

  26. Y. He, S. Liu, Simulation of the nucleation and crystal growth process in the laser-induced deposition in solution by a lattice Boltzmann method. Nanomaterials 12, 3213 (2022). https://doi.org/10.3390/nano12183213

    Article  PubMed  PubMed Central  Google Scholar 

  27. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Physica B 523, 24–30 (2017). https://doi.org/10.1016/j.physb.2017.08.013

    Article  ADS  Google Scholar 

  28. E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439, 012015 (2013). https://doi.org/10.1088/1742-6596/439/1/012015

    Article  Google Scholar 

  29. Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada, T. Uehashi, Magnetic properties of Mg-ferrite nanoparticles. J. Magn. Magn. Mater. 310, 2378–2380 (2007). https://doi.org/10.1016/j.jmmm.2006.10.737

    Article  ADS  Google Scholar 

  30. P.K. Tembhurne, S.M. Suryawanshi, K.G. Rewatkar, D.S. Chaudhary, S.J. Dhoble, Cation distribution of Ni2+ and Mg2+ ions improve the structure and magnetic properties of spinel ferrites. Int. J. Chem. Math. Phys. (IJCMP) (2021). https://doi.org/10.22161/ijcmp.5.6.2

    Article  Google Scholar 

  31. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Nanomaterials for high-frequency device and photocatalytic applications: Mg–Zn–Ni ferrites. J. Alloy. Compd. 746, 532–539 (2018). https://doi.org/10.1016/j.jallcom.2018.02.287

    Article  Google Scholar 

  32. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah, Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M = Ni, Zn, and Mg) ferrite nanoparticles. Physica B Condens. Matter 534, 134–140 (2018). https://doi.org/10.1016/j.physb.2018.01.033

    Article  ADS  Google Scholar 

  33. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 097166, 5 (2015). https://doi.org/10.1063/1.4931908

    Article  Google Scholar 

  34. J. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Study of dielectric properties of nanocrystalline cobalt ferrite upto microwave frequencies. Macromol. Symp. 357, 38–42 (2015). https://doi.org/10.1002/masy.201400183

    Article  Google Scholar 

  35. S. Halder, S. Bhuyan, R.N.P. Choudhary, Structural, dielectric and electrical characteristics of lead-free electro-ceramic: Bi(Ni2/3Ta1/3)O3. Eng. Sci. Technol. Int. J. 22, 376–384 (2019). https://doi.org/10.1016/j.jestch.2018.11.007

    Article  Google Scholar 

  36. R.Y. Mudi, V.L.N.B.G. Tiruveedhi, D. Kothandan, P.S.V. Shanmukhi, T.W. Mammo, N. Murali, Structural investigation, magnetic and DC electrical resistivity properties of Co0.5xNixZn0.5Fe2O4 nano ferrites. Inorg. Chem. Commun. 160, 111958 (2024). https://doi.org/10.1016/j.inoche.2023.111958

    Article  Google Scholar 

  37. S. Jabez, S. Mahalakshmi, S. Nithiyanantham, Frequency and temperature effects on dielectric properties of cobalt ferrite. J. Mater. Sci. Mater. Electron. 28(7), 5504–5511 (2017). https://doi.org/10.1007/s10854-016-6212-8

    Article  Google Scholar 

  38. S.K. Anirban, A. Dutta, Structure, small polaron hopping conduction and relaxor behavior of Gd2NiMnO6 double perovskite. J. Phys. Chem. Solids 159, 110292 (2021). https://doi.org/10.1016/j.jpcs.2021.110292

    Article  Google Scholar 

  39. S.G. Kakade, R.C. Kambale, Y.D. Kolekar, C.V. Ramana, Dielectric, electrical transport and magnetic properties of Er3+ substituted nanocrystalline cobalt ferrite. J. Phys. Chem. Solids 98, 20–27 (2016). https://doi.org/10.1016/j.jpcs.2016.03.015

    Article  ADS  Google Scholar 

  40. E. Pervaiz, I.H. Gul, High-frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: a novel electromagnetic material. J. Magn. Magn. Mater. 349, 27–34 (2014). https://doi.org/10.1016/j.jmmm.2013.08.011

    Article  ADS  Google Scholar 

  41. S.J. Japari, A.K. Yahya, R. Hisam, Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20−x)K2O–30V2O5–50TeO2 glasses. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102905

    Article  Google Scholar 

  42. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, T.W. Mammo, K.M. Batoo, M. Hadi, E.H. Raslan, S.F. Adil, Magnetic and DC electrical properties of Cu-doped Co–Zn nanoferrites. J. Mater. Electron. (2021). https://doi.org/10.1007/s11664-021-08760-8

    Article  Google Scholar 

  43. T. Dippong, I.G. Deac, O. Cadar, E.A. Levei, Effect of silica embedding on the structure, morphology and magnetic behavior of (Zn0.6Mn0.4Fe2O4)δ/(SiO2)(100−δ) nanoparticles. Nanomaterials 11, 2232 (2021). https://doi.org/10.3390/nano11092232

    Article  PubMed  PubMed Central  Google Scholar 

  44. K. Chandramouli, V. Raghavendra, P.V.S.K.P. Varma, B. Suryanarayana, T.W. Mammo, D. Parajuli, P. Taddesse, N. Murali, Influence of Cr3+-substituted Co0.7Cu0.3Fe2xCrxO4 nano ferrite on structural, morphological, dc electrical resistivity and magnetic properties. Appl. Phys. A 127, 596 (2021). https://doi.org/10.1007/s00339-021-04750-z

    Article  ADS  Google Scholar 

  45. T.W. Mammo, N. Murali, P.S.V. Shanmukhi, M.G. Kiran, D. Parajuli, G.M. Rao, K.M. Batoo, S. Hussain, Improved magnetic and dielectric behavior of Al–Cr substituted SrFe12O19 nano hexaferrite. Appl. Phys. A 129, 865 (2023). https://doi.org/10.1007/s00339-023-07157-0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author, K. M. Batoo, would like to thank Researchers Supporting Project no. (RSP2024R148), at King Saud University, Riyadh, Saudi Arabia, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. TWM, TAG, PSVS, BTT, NM, KMB, SH performed material preparation, data collection and analysis. TWM and NM wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Murali.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammo, T.W., Gebresilassie, T.A., Shanmukhi, P.S.V. et al. Study of structural, electrical and magnetic properties of co-substituted Co1−2xNixMgxFe2O4 (0 ≤ x ≤ 0.25) nanoferrite materials. Appl. Phys. A 130, 178 (2024). https://doi.org/10.1007/s00339-024-07347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07347-4

Keywords

Navigation