Skip to main content
Log in

Influence of Mn substitution on structural, electrical, and magnetic properties of Li0.5Fe2.5-xO4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of Mn inclusion on the structural, electrical, and magnetic parameters of Li0.5Fe2.5O4 wad analyzed. To procure nanoparticles of all the samples, a simple sol–gel self-combustion method was employed. In-depth, refinement of structural patterns reflects the ordered spinel phase (P4332) starts to demolish, and mixed-phase formation takes place with the replacement of Fe with Mn ions. FTIR gives similar findings, i.e., change of space group from P4332 to mixed phase with P4332 and Fd-3 m as the major characteristic absorptions and its shoulder bands start to smear out with the inclusion of Mn. FE-SEM images reflect that morphological tuning occurs through clustered nanoparticles’ agglomeration. The declining of electrical parameters dielectric constant, and loss tangent, indicates that electron hopping gets deterred through the inclusion of Mn. DC resistivity and activation energy are enhanced with the inclusion of Mn. The magnetic parameters also decline with Mn inclusion in the lithium ferrite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. P. Kharbanda, T. Madaan, I. Sharma, S. Vashishtha, P. Kumar, A. Chauhan, S. Mittal, J.S. Bangruwa, V. Verma, Heliyon 5, e01151 (2019). https://doi.org/10.1016/j.heliyon.2019.e01151

    Article  PubMed  PubMed Central  Google Scholar 

  2. M.A. Ahmed, N. Okasha, S.I. El-Dek, Nanotechnology 19, 065603 (2008). https://doi.org/10.1088/0957-4484/19/6/065603

    Article  ADS  PubMed  Google Scholar 

  3. M. Sharif, J. Jacob, M. Javed, A. Manzoor, K. Mahmood, M.A. Khan, Physica B: Condens Matter 567, 45 (2019). https://doi.org/10.1016/j.physb.2019.05.014

    Article  ADS  Google Scholar 

  4. M. Gaudon, N. Pailhé, A. Wattiaux, A. Demourgues, Mater. Res. Bull. 44, 479 (2009). https://doi.org/10.1016/j.materresbull.2008.12.005

    Article  Google Scholar 

  5. Dipti, P. Kumar, J.K. Juneja, S. Singh, K.K. Raina, C. Prakash, Ceram. Int. 41, 3293 (2015). https://doi.org/10.1016/j.ceramint.2014.10.092

    Article  Google Scholar 

  6. G. Aravind, M. Raghasudha, D. Ravinder, M. Manivel Raja, S.S. Meena, P. Bhatt, M. Hashim, Ceram. Int. 42, 2941 (2016). https://doi.org/10.1016/j.ceramint.2015.10.077

    Article  Google Scholar 

  7. Z. Lu, Y. Dang, C. Dai, Y. Zhang, P. Zou, H. Du, Y. Zhang, M. Sun, H. Rao, Y. Wang, J. Hazard. Mater. 403, 123979 (2021). https://doi.org/10.1016/j.jhazmat.2020.123979

    Article  PubMed  Google Scholar 

  8. H.M. Tahir Farid, I. Ahmad, I. Ali, A. Mahmood, S.M. Ramay, Eur. Phys. J. Plus 133, 41 (2018). https://doi.org/10.1140/epjp/i2018-11832-4

    Article  Google Scholar 

  9. R.P. Patil, P.P. Hankare, K.M. Garadkar, R. Sasikala, J. Alloys, Compound 523, 66 (2012). https://doi.org/10.1016/j.jallcom.2012.01.025

    Article  Google Scholar 

  10. S.S. Teixeira, F. Amaral, M.P.F. Graça, L.C. Costa, Mater. Sci. Eng. B 255, 114529 (2020). https://doi.org/10.1016/j.mseb.2020.114529

    Article  Google Scholar 

  11. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124, 818 (2018). https://doi.org/10.1007/s00339-018-2241-x

    Article  ADS  Google Scholar 

  12. M.M. Hessien, J. Magn. Magn. Mate. 320, 2800 (2008). https://doi.org/10.1016/j.jmmm.2008.06.018

    Article  ADS  Google Scholar 

  13. M. Srivastava, S. Layek, J. Singh, A. Das, H.C. Verma, A.K. Ojha, N.H. Kim, J.H. Lee, J. Alloys, Compd 591, 174 (2014). https://doi.org/10.1016/j.jallcom.2013.12.180

    Article  Google Scholar 

  14. Y.P. Fua, C.H. Lin, C.W. Liu, Y.D. Yao, J. Alloys Compd. 395, 247 (2005). https://doi.org/10.1016/j.jallcom.2004.11.049

    Article  Google Scholar 

  15. Y.P. Fu, C.S. Hsu, Solid State Commun. 134, 201 (2005). https://doi.org/10.1016/j.ssc.2004.12.035

    Article  ADS  Google Scholar 

  16. N.G. Jović, A.S. Masadeh, A.S. Kremenović, B.V. Antić, L.B. Jovan, D.C. Nikola, F.G. Gerardo, M.V. Antisari, S.B. Emil, J. Phys. Chem. C 113, 20559 (2009). https://doi.org/10.1021/jp907559y

    Article  Google Scholar 

  17. M. Ahmad, M. Shahid, Y.M. Alanazi, A. Rehman, M. Asif, C.W. Dunnill, J. Mater. Res. Tech. 18, 3386 (2022). https://doi.org/10.1016/j.jmrt.2022.03.113

    Article  Google Scholar 

  18. D.R. Mane, S. Patil, D.D. Birajdar, A.B. Kadam, S.E. Shirsath, R.H. Kadam, Mater. Chem. Phys. 126, 755 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.048

    Article  Google Scholar 

  19. G. Aravind, M. Raghasudha, D. Ravinder, J. Materiomics 1, 348 (2015). https://doi.org/10.1016/j.jmat.2015.09.003

    Article  Google Scholar 

  20. M. Junaid, M.A. Khan, A. Majeed, H. Alkhaldi, M.S. Attia, M.A. Amin, M.A. Iqbal, Ceram. Int. 48, 21610 (2022). https://doi.org/10.1016/j.ceramint.2022.04.134

    Article  Google Scholar 

  21. H.M. Widatallah, F.N. Al-Mabsali, F.S. Al-Hajri, N.O. Khalifa, A.M. Gismelseed, A.D. Al-Rawas, M. Elzain, A. Yousif, Hyperfine Interact. 50, 237 (2016). https://doi.org/10.1007/s10751-016-1290-9

    Article  Google Scholar 

  22. B. Mali, K. Ashok, H. Sreemoolanadhan, S. Elizabeth, J. Alloys Compd. 911, 165036 (2022). https://doi.org/10.1016/j.jallcom.2022.165036

    Article  Google Scholar 

  23. P.H. Gómez, J.M. Muñoz, M.A. Valente, M.P.F. Graça, Mate. Res. Bull. 112, 432 (2019). https://doi.org/10.1016/j.materresbull.2018.09.005

    Article  Google Scholar 

  24. P.D. Baba, G.M. Argentina, W.E. Courtney, G.F. Dionne, IEEE Trans. Magnet. 8, 83 (1972)

    Article  ADS  Google Scholar 

  25. G.O. White, C.E. Patton, J. Magn. Magn. Mate. 9, 299 (1978). https://doi.org/10.1016/0304-8853(78)90085-9

    Article  ADS  Google Scholar 

  26. M.A. Marjeghal, A. Sedghi, S. Baghshahi, J. Alloys Compd. 968, 171765 (2023). https://doi.org/10.1016/j.jallcom.2023.171765

    Article  Google Scholar 

  27. S.D. Patil, S.M. Mane, P.M. Kharade, J.V. Thombare, R.S. Gaikwad, M.P. Tirpude, J.C. Shin, S.S. Dhasade, H.J. Kim, ECS J. Solid State Sci. Technol 11, 054010 (2022). https://doi.org/10.1149/2162-8777/ac7077

    Article  ADS  Google Scholar 

  28. Y.P. Fu, D.S. Hung, Y. Der Yao, Ceram. Int. 35, 2179 (2009). https://doi.org/10.1016/j.ceramint.2008.11.027

    Article  Google Scholar 

  29. H.M. Rietveld, J. Appl. Cryst 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  ADS  Google Scholar 

  30. N. Doebelin, R. Kleeberg, J. Appl. Cryst 48, 1573 (2015). https://doi.org/10.1107/S1600576715014685

    Article  ADS  Google Scholar 

  31. V. Rathod, A.V. Anupama, V.M. Jali, V.A. Hiremath, B. Sahoo, Ceram. Int. 43, 14431 (2017). https://doi.org/10.1016/j.ceramint.2017.07.213

    Article  Google Scholar 

  32. S. Soreto, M. Graça, M. Valente, L. Costa, Magnetic spinels-synthesis, properties and applications Edited by M. Seehra, (Intechopen, London, 2016), 31. https://doi.org/10.5772/110790.

  33. R.P. Patil, S.B. Patil, B.V. Jadhav, S.D. Delekar, P.P. Hankare, J. Magn. Magn. Mater. 401, 870 (2016). https://doi.org/10.1016/j.jmmm.2015.10.062

    Article  ADS  Google Scholar 

  34. M. Dasari, G.R. Gajula, D.H. Rao, A.K. Chintabathini, S. Kurimella, B. Somayajula, Proces. Appl. Ceram 11, 7 (2017). https://doi.org/10.2298/PAC1701007D

    Article  Google Scholar 

  35. S.A. Mazen, M.H. Abdallah, R.I. Nakhla, F. Metawe, Mater. Chem. Phys. 34, 35 (1993). https://doi.org/10.1016/0254-0584(93)90116-4

    Article  Google Scholar 

  36. S.C. Watawe, B.D. Sutar, B.D. Sarwade, B.K. Chougule, Int. J. Inorg. Mate 3, 819 (2001). https://doi.org/10.1016/S1466-6049(01)00174-X

    Article  Google Scholar 

  37. F. Petit, M. Lenglet, Solid State Commun. 86, 67 (1993). https://doi.org/10.1016/0038-1098(93)90923-B

    Article  ADS  Google Scholar 

  38. A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, D.R. Mane, A.R. Shitre, ISRN Ceram. 2012, 866123 (2012). https://doi.org/10.5402/2012/876123

    Article  Google Scholar 

  39. E.W. Gorter, Saturation Magnetization and crystal chemistry of ferrimagnetic oxides (University of Leyden, 1954)

    Google Scholar 

  40. S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, J. Appl. Phys. 112, 103924 (2012). https://doi.org/10.1063/1.4767364

    Article  ADS  Google Scholar 

  41. J.G. Lu, Y.Z. Zhang, Z.Z. Ye, Y.J. Zeng, H.P. He, L.P. Zhu, J.Y. Huang, L. Wang, J. Yuan, B.H. Zhao, X.H. Li, Appl. Phys. Lett. 89, 112113 (2006). https://doi.org/10.1063/1.2354034

    Article  ADS  Google Scholar 

  42. R.P. Patil, B.V. Jadhav, P.P. Hankare, Results Phys. 3, 214 (2013). https://doi.org/10.1016/j.rinp.2013.09.006

    Article  ADS  Google Scholar 

  43. P.P. Mohapatra, P. Dobbidi, J. Phys. Chem. C 125, 14014 (2021). https://doi.org/10.1021/acs.jpcc.1c02504

    Article  Google Scholar 

  44. E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, J. Electroceram. 27, 154 (2011). https://doi.org/10.1007/s10832-011-9660-9

    Article  Google Scholar 

  45. R. Tholkappiyan, K. Vishista, Appl. Surf. Sci. 351, 1016 (2015). https://doi.org/10.1016/j.apsusc.2015.05.193

    Article  Google Scholar 

  46. P. Butnoi, W. Senanon, N. Chanlek, Y. Pooarporn, S. Pinitsoontorn, S. Maensiri, P. Songsiriritthigul, P. Khemthong, P. Kidkhunthod, Prog. Nat. Sci.: Mater. 31, 420 (2021). https://doi.org/10.1016/j.pnsc.2021.03.004

    Article  Google Scholar 

  47. S.M. Mane, P.M. Tirmali, S.B. Kulkarni, Mater. Chem. Phys. 213, 482 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.059

    Article  Google Scholar 

  48. S. Kumar, S. Supriya, M. Kar, Mater. Res. Express 4, 126302 (2017). https://doi.org/10.1088/2053-1591/aa9a51

    Article  ADS  Google Scholar 

  49. S. Supriya, S. Kumar, M. Kar, J. Appl. Phys. 120, 215106 (2016). https://doi.org/10.1063/1.4968795

    Article  ADS  Google Scholar 

  50. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, J. Magnet. Magnet. Mate 238, 207 (2002). https://doi.org/10.1016/S0304-8853(01)00914-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (Ministry of Trade, Industry, and Energy-MOTIE) (P0012770) and (N000OOOO).

Author information

Authors and Affiliations

Authors

Contributions

SDP: Conceptualization, experimental, data creation and analysis, investigation, writing—original draft. SMM: Data creation and analysis, investigation, resources, writing—original draft, revision, and editing. NTT: Data curation, analysis, software, writing—original draft. UEM: Formal analysis, resources, visualization. JL: Formal analysis, supervision, validation, visualization, project administration. SSD: Conceptualization, formal analysis, resources, writing—original draft, validation.

Corresponding authors

Correspondence to Jaewoong Lee or Shankar S. Dhasade.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.D., Mane, S.M., Tayade, N.T. et al. Influence of Mn substitution on structural, electrical, and magnetic properties of Li0.5Fe2.5-xO4. Appl. Phys. A 130, 183 (2024). https://doi.org/10.1007/s00339-024-07344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07344-7

Keywords

Navigation